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ERRATA

On page 15 in the last paragraph, the sentence beginning “We can then see...” should read:
We can then see that W3(x)={y:d(¢"}x, ’Zy)_*o as n—oo}={y:y;=x; for i > n} and WY (x)={y:y;=x;
for ¢ < n}.

On page 15, 6 lines from the bottom, in the definition of the metric, 2 i should read 2~ IH.
On page 16, fourth line from top should have “M; =1if o(R;)NR; # 0.
On page 19, second line should read “¢ ~ 19 is a Markov partition.”

On page 25 in Example 2.2.1, the Markov matrix M is incorrect. R, should be crossed by rectangles
numbered 1,3,4,7, and 8 but not 5, and R, should be crossed by rectangles numbered 1, 5, and 7 but

not 6.
On page 27, Figure 2.2.6, the point D should be on the upper boundary of R2, not the lower.

On page 34 in Example 2.2.18, the sentence beginning “We label...” should read:

We label S;={all uncovered components in R, — AR,} with A,, S,={all uncovered components in
R, —S; — A?R,} with A,,...,S ={all uncovered components in R,—S, =S, _;—-A"R,} with A and
Spmn 4+ k={all uncovered components in R; —S; =S, _;—A""* kR, for meZ + and 0<k<n+1}
with Aj.

On page 36, Example 2.2 19 should refer to Figure 2,2.21 while Example 2.2.20 should refer to Figures
2.2.22-2.2.24.

On page 46, the proof of Theorem 3.2.1 only deals with the case in which all rectangles are connected.
However, as the transition matrix for an FCC partition is the transition matrix for a partition with
connected rectangles on which a row or column amalgamation has been performed, the theorem follows
directly. )
- On page 77, Proposition 5.1.6, the assumpticns should read that a > 2.
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ABSTRACT

Markov Partitions for Hyperbolic Automorphisms of the Two-Dimensional Torus

Mark R. Snavely

Hyperbolic automorphisms of the two-dimensional torus are determined by hyperbolic, two-by-
two, integer matrices with determinant plus or minus one. These maps were found to have
relatively simple Markov partitions in the late 1960’s independently by K. Berg in his Ph.D.

thesis and by R. Adler and B. Weiss.

THEOREM: Let A be a hyperbolic automorphism of T2 and let 9 be a Markov partition for
A with a finite number of connected rectangles and suppose the transition matrix for this
system is M. If the trace of A is positive, then the eigenvalues of M are the eigenvalues of A
together with zeros and roots of unity. If the trace of A is negative, then the eigenvalues of

—M are the eigenvalues of A together with zeros and roots of unity.

In the two rectangle case, we prove an even more powerful result.

THEOREM: Let A be a hyperbolic toral automorphism with the trace of A positive. Let M
be a two-by-two, non-negative, integer matrix. There is a Markov partition for A with two
rectangles and Markov matrix M if and only if A and M are similar over the integers. If the
trace of A is negative, then such a partition exists if and only if A and —M are similar over
the integers.
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DEFINITION: We define the unstable core of P, denoted U, to be the intersection over

backward time of the unstable boundary of ®. We define the stable core of @, denoted ¥, to
be the intersection over forward time of the stable boundary of . We define the core of 2,

denoted C, to be C=UUY.

Ashley, Kitchens, and Stafford have shown that the core as defined above can include any sofic
system with low enough entropy and few enough periodic points of each period. We construct
examples which demonstrate the composition of the core and its relationship to M.

Finally, we return to the two rectangle case and prove the following theorem.

THEOREM: Suppose A is a hyperbolic toral automorphism. There is a finite set § of two

rectangle partitions such that any other two rectangle partition is the image of a partition in §

under an element of GL(2,Z) which commutes with A.
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CHAPTER 0 - INTRODUCTION

SECTION 0.1: A BRIEF HISTORY OF THE PROBLEM

The dynamics of automorphisms of the torus have been studied for some time and have proven
to be a rich mathematical construct. Applications of such dynamics for the two-dimensional
torus can be found in a variety of places ranging from beginning texts in dynamical systems to
texts in ergodic theory and measure theory. These maps exhibit interesting geometric,
topological, algebraic, measure theoretic, and ergodic properties in a rather tractable setting.
The beginning student in dynamical systems is often introduced to the notion of a Markov
partition by looking at the torus, yet there is still much we do not know about these maps.

Some questions about the behavior of these systems will be answered in this paper.

It was noticed independently by Berg [4] and by Adler and Weiss [2] in the late 1960’s that the
two-torus had relatively simple Markov partitions. This discovery allowed the use of symbolic
dynamics in analyzing automorphisms of the torus — namely a relationship between Markov
partitions for a smooth dynamical system and a symbol space associated with the partitions
which was easier to study in certain instances. For a more detailed history, the reader is

strongly encouraged to read Adler [1].

This work was inspired not only by the work of Adler and Weiss, but also by the work of

Stafford on the doubling map z+— 2z for S/ [12]. Indeed, Theorem 3.2.1 is an extension of his
1



Proposition C from T1=87 to T2.

In this thesis, we begin by introducing the theory of Axiom A diffeomorphisms on which the
ideas of Markov partitions are based. We then give a number of examples of Markov
partitions and in the process describe the invariant set contained in the boundary of the
partition. In Chapter 3 we give necessary conditions on the eigenvalues of the Markov matrix
when the aforementioned invariant set is finite. In Chapter 4 we give necessary and sufficient
conditions on the Markov matrix for a partition with two connected rectangles. Finally, in
Chapter 5 we show that if we focus our attention on partitions with two connected rectangles,
there is a finite set of partitions which generate all other partitions with two rectangles. In

Chapter 6 we summarize and hypothesize as to where these results can lead.



CHAPTER 1 - AXIOM A AND THE TORUS

SECTION 1.1: AXIOM A DIFFEOMORPHISMS

The purpose of this thesis is to examine Markov partitions for hyperbolic automorphisms of the
two-dimensional torus. To do so, we must first review the theory of Axiom A diffeomorphisms
from which the idea of Markov partitions developed. Any proofs in this section not referenced

or given can be found in Bowen, Chapter 3 [5].

We begin by defining terms which will be used throughout the paper. Suppose that M —M is
a C* diffeomorphism of a manifold M and let A be an invariant set for f; that is, f(A)CA.
The derivative of f can be viewed as a map Df:TM —TM where TM = U TxM is the tangent

XEM
bundle of M, TxM is the tangent space of M at xéM, and Dfx:TxMwa»Tf(x)M.

DEFINITION 1.1.1: An invariant set A is said to be hyperbolic if for every x€A, the tangent
space TyM has a direct sum decomposition into subspaces E} and ES such that

a) TyM=E} ®E%

b) Df(Ef'c):Ef.(x) ; Df(EQ):E;.‘(x)

c) there exist ¢c>0 and A€(0,1) such that

IDfn(v)HSc,\nlvl for veE} and n>0
and ID{'_“(v)ﬁgc)&_nlvl for veE} and n>0.
d) EY and E§ vary continuously with x.

3



4

DEFINITION 1.1.2: A point x€M is called ponwandering if U () ( LS‘
n

neighborhood U of x. We denote the set of all nonwandering points of f by Q(f). Q(f) is closed

fnU)#ﬂ for any
0

and invariant under f.

Another way of stating the definition of nonwandering is that every neighborhood of x returns

and intersects itself under enough iterates of f.

DEFINITION 1.1.3: A point x is periodic if f(x)=x for some n>0. We call n the period of f

and denote the set of all periodic points of f by Per(f). Clearly Per(f)CQ(f).

DEFINITION 1.1.4: A point x is called a fixed point if f(x)=x. We denote the set of all fixed

points of f by Fix(f). Clearly, Fix(f)C Per(f)
DEFINITION 1.1.5: fis said to satisfy Axiom A if Q(f) is hyperbolic and Q(f)=Per(f).

DEFINITION 1.1.6: f is said to be Anosov if all of M is hyperbolic. It can be shown that an

Anosov diffeomorphism always satisfies Axiom A [5).

DEFINITION 1.1.7: For x€M, let us define the following:
W8(x)={y€eM: d(f"x,"y)—0 as n— oo}
WE(x)={yeM: d(f"x,Py)<e for all n>0}
WY (x)={y€M: d(f " "x,f " "y)—0 as n— o0}
We (x)={yeM: d(f~"x,f " "y)<e for all n>0}.
We call WS(x) the stable manifold of x. We call WY(x) the unstable manifold of x. Wg(x)

and W¢(x) are called the local stable and local unstable manifolds respectively.




We now state a stable manifold theorem, which is proven in [6]. The statement is from [5].

THEOREM 1.1.8: Let A be a hyperbolic set for a C* diffeomorphism f. For small >0
a) W¢(x) and W¥(x) are CT disks for x€A with TxWe(x)=E} and
TxW¢(x)=EY.
b) d(f"x,f"y)< A"d(x,y) for YyEW¢e(x) and n>0 and
d(f ™ x,f " Py)<A"d(x,y) for YEWE(x) and n>0.
¢) W§(x) and W¥(x) vary continuously with x.

From this we see that WE(x)CW5(x) and WE(x)CWY(x).
THEOREM 1.1.9 Canonical Coordinates: Suppose f satisfies Axiom A. Then for any small
€>0 there is a §>0 such that W%(x)ﬂwg(y) consists of a single point, denoted [x,y], for any

X,y €Q(f) with d(x,y)<é. Further, [x,y]eQ().

DEFINITION 1.1.10: We say that f is topologically transitive if for every pair of open sets U

and V there is an integer n such that f'(U)NV#D. We say that f is topologically mixing if

there is an integer N such that for every n>N, f/(U)nV#£4.

THEOREM 1.1.11 Spectral Decomposition: The nonwandering set Q(f) can be decomposed
into a finite number of pairwise disjoint closed sets §2; such that Q(f)= 2,UQ,U...UQ, and
a) f(Q;)=9; and flgi is topologically transitive
b) Q;=X,;UX,,u.. -an'.,i with the X, ; pairwise disjoint closed sets
such that f(X; )=X;; (X, ,,:=X,,) and fn‘ij’_is

]

topologically mixing.



DEFINITION 1.1.12: The §2; in Theorem 1.1.11 are called basic sets.

We now define Markov partitions for Axiom A diffeomorphisms.

DEFINITION 1.1.13: Suppose 2, is a basic set for an Axiom A diffeomorphism. Then a
subset RCQ; is called a rectangle if R has small diameter and [x,y]€R for any x,y€R. R is
called a proper rectangle if R is closed and R=int(R). By int(R), we mean the interior of R as

a subset of ;. Our rectangles will always be assumed to be proper.

DEFINITION 1.1.14: For x€R, we define W5(x,R) and WY(x,R), the stable and unstable
manifolds of x in R to be W%(x,R)=W%(x)NR and WY (x,R)=WP(x)NR respectively where

the diameter of R is small in relation to ¢.

LEMMA 1.1.15: Let R be a proper rectangle. As a subset of ,, R has boundary
0R=05RUJ,R where
OsR={x€R:xgint(W"(x,R)}
duR={xeR:xgint(W°(x,R)}

and the interiors of WY(x,R) and WS(x,R) are as subsets of WY(x)NQ and We(x)nQ

respectively.

DEFINITION 1.1.16: A Markov partition for Q, is a finite covering P={R;, Rj,..., R;} of

€2, where each R, is a proper rectangle and
a) int(R;)Nint(R;)=0 for i
b) f(w“(x,R,.))pw“(fx,Rj) and f(ws(x,R,.))cws(fx,Rj)

if x€int(R;) and fx€int(R;).



7
We conclude this section by showing how often Markov partitions occur in the Axiom A

setting.

THEOREM 1.1.17: Let Qg be a basic set for an Axiom A diffeomorphism f. Then Qg has

Markov partitions of arbitrarily small diameter.
SECTION 1.2: TORAL AUTOMORPHISMS

In this section we will apply the theory developed in the previous section to automorphisms of

the two-dimensional torus. We begin with a discussion of toral automorphisms.

DEFINITION 1.2.1: We say that a matrix A is hyperbolic if none of the eigenvalues of A

have modulus 1.

Suppose that a 2x2 matrix x:[g&] with integer entries is hyperbolic. Suppose further that
det(A)==1; that is, A€GL(2,Z). Then A~! is also an integer matrix with determinant +1
hence also in GL(2,Z). The characteristic polynomial of A is x(A):,\z—Tr(J.)A+det(.A)=
Az—Tr(A)Ail. In order for A to be hyperbolic, Tr(A)50. Since the product of the
eigenvalues of A has to be 41, we must have real irrational eigenvalues Ay and )g satisfying
[Au|>1>|Ag|>0; they are real and irrational by the Perron-Frobenius Theorem [10]. The

eigenvectors corresponding to Ay and )g are:

and

Au—ﬂ As_‘a
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respectively, denoted V,, and V5. The quantity mu='\“b_a is the slope of V), and similarly
ms=)‘sb_a is the slope of vg.

DEFINITION 1.2.2: We call ), the unstable eigenvalue of A and g the stable eigenvalue of
A. The corresponding eigenvectors, ¥, and Vg, are called the unstable and stable eigenvectors

respectively. We note at this time that if Tr(A)>0, then A, >0 and if Tr(A)<0, then A, <0.

We now consider the map that A induces on R2. (R is used to denote Euclidean space.) Since
A is an integer matrix, A maps the integer lattice into itself. Further, the origin is always a
fixed point of A. We know that if (x,y) is on either of the lines y=myx or y=mgx then
J.(x,y)z..ﬂl[;] is also on that line. If (x,y) is on the line through (a,b) with slope my then
A(x,y) is on the line through A(a,b) with slope m,. To see this, suppose (x,y) is on such a
line. Then (x,y) can be written as (a,b)+k(1,m,) for kER. A(x,y) is then A((a,b)+k(1,my))
=.A(a,b)+kAy(1,my) which is on the line through A(a,b) with slope my. A similar result

holds for line with slope myg.

Let T2 be the space R?/Z? where Z is the set of integers and R?/Z? identifies (x,y) and
(x+a,y+B) for x,y€R and o,f€Z. T2 can then be viewed as [0,1]x[0,1]. Let = denote the
map RZLR2/22. A induces an automorphism of T2 which we will also denote A. Since A

preserves the integer lattice, the following diagram commutes:

R? 4 g2
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DEFINITION 1.2.3: We call the automorphism induced by a 2x2 hyperbolic integer matrix

A€GL(2,Z) a hyperbolic toral automorphism or a toral Anosov map.

We note at this time that the following generalizes to T"=R"/Z" and that all continuous
automorphisms of T" are determined by integer matrices in GL(n,Z); the hyperbolic ones
determined by the hyperbolic elements. There are discontinuous automorphisms of T" but
these turn out to be nonmeasurable [2). This paper will deal only with continuous

automorphisms of T2.

PROPOSITION 1.2.4: WY(x) for x€ T2 is the projection of a line Ly through 7~ x parallel to

Vu and W5(x) is the projection of a line Ls through 7~1x parallel to V.

Proof: We give the proof for W*(x) with the proof for WY(x) being similar. W(x)={yeT?
d(A"x,A"y)—0 as n—oo}. Let 7 1y be a point on Lg and let ICLg be the line segment
joining 7~ x and 7~y with length 6. The length of A™I will then be AR§—0 as n— oo since
As<1; therefore, d(An(fr‘lx),An(x"ly))—»ﬂ as n—oo hence d(A"x,A"y)—0 as n—co and
yEWS(x). If y is not on Lg, then y=c¢,Vu+cyVs and x=ciVy+chVs with cy#cy; for if
c1=c’1, y is on Lg. Hence, d(.Anx,.Any)z,\ﬁlcl—ci f Therefore as n— co the distance between

A"x and A™y cannot approach zero and y g W¥(x). O

PROPOSITION 1.2.5: For a hyperbolic toral automorphism A, all of T2 is hyperbolic, every

point xe T2 is nonwandering, and A is topologically mixing on T2.

Proof: We can see that Ty T2=W"(x)®W?%(x) and conditions b), ¢), and d) of Definition 1.1.1

are satisfied because DA=A. Every point x€T? is nonwandering because every neighborhood



10
of x contains a line segment ICW"(x) and {length of A"(I)} =00 as n—oo. .A is mixing by a

similar argument. u}

This proposition tells us that A has one basic set, namely all of T2. Therefore by Theorem
1.1.17, there exist Markov partitions of T2 with arbitrarily small diameter. Before
constructing a Markov partition for a hyperbolic automorphism A of T2, we make the

following observations and definitions.

DEFINITION 1.2.6: We define the boundary of a Markov partition P={R;};_,, denoted 89,
to be 6‘5’:031{,-. By Lemma 1.1.15, we know that R;=0,R;UdsR,;. We then define the
unstable bo:;:iarx of P as 6u‘.P=UBHRi and the stable boundary of P as 8,;9’:033113-.
i=] i=1

The R,’s for automorphisms of T2 can be unions of actual rectangles in the geometric sense.
This will be true in this paper and for now we will assume that all rectangles are connected.
Disconnected rectangles are covered in Chapter 2. Connected rectangles (when projected into
R2) have two sides parallel to a line through the origin with slope my and two sides parallel to

a line through the origin with slope mg. From the definition of Markov partition (1.1.16), we

see that 1) .,4“1(3“9‘) C Oy? and i) A(FsP) C 85P. This allows us to define the following:

DEFINITION 1.2.7: The unstable core of P , denoted 4, is defined as m:_“ﬁlx—i(au@).
I=
Similarly, define the stable core of 2, denoted ¥, as 3=,°ﬁlxi(as@). We then define the core
=

of P, denoted €, as C=UUY.

Chapter 2 will discuss the composition of the core. From b) in the definition of Markov

partition (1.1.16), we know that if A(R;) intersects R;, A(R.) crosses R. from one end to the
i ] i J
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other in the unstable direction. Also, if A(Ws(x,R‘-))nint(Rj)-',éﬂ, then A(WS(X,R;))CRJ-.

Hence, we can define a transition matrix as follows:

DEFINITION 1.2.8: We define the Markov matrix for a Markov partition % with r rectangles

for A by m; .= {the number of times A(R;) crosses the interior of Rj} for 1<4,j< .

EXAMPLE 1.2.9: Let A= [ﬂ] Then the eigenvalues of A are ,\uzi?’—g and

1 1
)\g=3_2"[g with corresponding eigenvectors {51 and | {1 respectively,
2

Figures 1.2.10—1.2.12 are a Markov partition P for A, A(P), and A~1(P). We draw T2 as
[0,1]x[0,1] with opposite sides identified. ~We see that A(R;) crosses R twice and R, once
and A(R;,) crosses R; and R, each once giving us M= B}] Notice that if we reverse the
labeling of R; and R, then M= [i%] The core of P, as seen from the diagrams, is simply a

single fixed point drawn at the origin.
SECTION 1.3: SYMBOLIC DYNAMICS

The importance of Markov partitions is that they allow us to use the tools of symbolic
dynamics in the study of toral automorphisms. We begin by introducing the basics of

symbolic dynamics,

Let A be an rxr, non-negative, integral matrix. Let G(A) be the directed graph with states
{1,2,...,r} and for 0<i,j<r, G(A) has A,-J- edges from state i to state j. Let & denote the set of

edges of G(A).



A(RY)

R,

Figure 1.2.10: The Partition ? of Example 1.2.9

A(R \7

ARY)

Figure 1.2.11: A(P)
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AR

AR
A:' ‘(R l)

A"‘ (R

@
K¢ RO\ AT

Figure 1.2.12: A~}(9)

DEFINITION 1.3.1: We say that edge f follows edge e if the initial vertex of f is the terminal

vertex of e. We denote the set of all followers of a given state e by F(e).

DEFINITION 1.3.2: We define the shift of finite type, abbreviated SFT, also called a

topological Markov shift,
EAz{xesz: X;,; follows x; for all i€Z}
with the product topology.
We also define the ghift map UA:EA'"’EA by
o (x)=y where Y;=x;,, for all i€Z.
We will often use Z, to denote the pair (EA,O'A). The elements of & will often be referred to
as the symbols of & A We abbreviate o A by just o. A shift defined in this way is called an

edge shift for obvious reasons.
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EXAMPLE 1.3.3: If A is the 1x1 matrix [k}, then 8={1,2,..k} and £, ={1,2,..k}%; in
other words, Ek is all bi-infinite sequences consisting of the elements of &. Ek is called the full

k shift or a Bernoulli shift. See Figure 1.3.4 for a diagram of the full 2 shift.

Figure 1.3.4: A Full 2 Shift - Edge Shift

DEFINITION 1.3.5: If A has only 0’s and 1’s as entries, we can define a SFT called a vertex
shift as follows: Let G(A) be the directed graph with states S$={1,2,...,7} and for 0<i,j<r,
G(A) has an edge from state i to state j if and only if A;;=1. We then define

EA={XGSZ: Ax.-,x'-ﬂzl for all i€Z}

and 0, 8S before.

EXAMPLE 1.3.6: Figure 1.3.7 is the graph for a full 2 shift. The matrix for the shift is

A=[t1].

Figure 1.3.7: A Full 2 Shift - Vertex Shift
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We note at this time that an edge shift as defined above is topologically conjugate (defined

below) to a vertex shift and we will use both constructions as we need them.

DEFINITION 1.3.8: A subshift is a closed, & invariant subset of Z. All SFT’s are clearly

subshifts.

DEFINITION 1.3.9: A non-negative integral matrix A is said to be irreducible if for each pair
of states 1,5, there is an integer m>0 such that A?} >0. If there is an integer m>0 such that

A™ >0 then A is called aperiodic.

We recall the definitions of topologically transitive and topologically mixing from Section 1.1.
If we restrict these definitions to positive integers, we have defined forward transitive and
mixing for SFT’s. In terms of the graph of T A topologically transitive means that we c‘an
find a path from any edge to any other edge including itself. Mixing means that for some m
we can find a path of length m from any edge to any other edge including itself. It is well

known that EA is forward transitive <> A is irreducible and EA is mixing < A is aperiodic.

There is a metric d on I, defined as follows: if X,yEL, then d(x,y):i;{?mf”&(x‘,yi) where
6(x;,y;)=11if x;#y; and 0 if x;=y,. We can then see Ws(x)={y:d(aix,aiy)—>0 as n— 0o}
= {y:y;=x; for i<n} and Wu(x)={y:yi=x£ for i>n}. If x and y are close enough, namely if
Xo=Yo, then W¥(x)NW"(y) is a single point z2=(...,X_p, X_1, Xg=V¥g» Y1, ¥o,...). Therefore if
Xg=Y¥p, then [X,y]=2z in the sense of Definition 1.1.9. We can then construct a Markov

partition for (EA,a'A).
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EXAMPLE 1.3.10: Let A=[k]. We define rectangles R;={y:yo=1} for 1<i<k. These are
clearly closed (and open), cover all of © A» and satisfy both the [-,-] condition and the stable
and unstable manifold condition in Definition 1.1.16. We define the transition matrix in a

slightly different fashion: M, .=1 if o(R;)NR;#0 and 0 otherwise.

DEFINITION 1.3.11: Let X and Y be two topological spaces and let :X—X and g:Y—Y be
two continuous maps. A continuous, surjective map h:X—Y is said to be a semiconjugacy or

a factor map if hf=gh; that is, if the following diagram commutes:

x L x
th |h
vy&y

If in addition h is a homeomorphism, we call h a topological conjugacy and say that f and g

are topologically conjugate,

It is known that every non-negative integer matrix is topologically conjugate to an integer
matrix with only 0’s and 1’s as entries. Also, for a given Markov partition of T2, we may
always divide our rectangles so that all entries in the Markov matrix are either 0’s or I’s; in
other words, A(R;) crosses R; at most once for all i and j. As a matter of fact, Adler and
Weiss [2] used this form of the partition in their original paper. Hence, for the rest of this
section, we will assume that both the matrix A for a SFT and the Markov matrix M for a

Markov partition of T2 are 0-1 matrices and use larger integers only for simplicity in examples.

We now consider Ly where M is the Markov matrix for a Markov partition @ for a toral
automorphism A. M;.=1 if A(R;) crosses R; once. Therefore, in Zpp there is an edge from

state i to state j if and only if A(R;) crosses R;. We then define a map h:EM--uT2 by h(a)=x
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where .An(x)ERan for neZ.

THEOREM 1.3.12: For each a€ Zyp» the setnfe]z.al_“Ran consists of a single point denoted
h(a). The map h defined above is a continuous surjection, ho=.h, and h is one-to-one over
the residual set 3={y: A" (y)g 0% for all neZ}.
In other words, the following diagram commutes:
Zm> Ty
lh  |h

12 4 72
Proof: The proof for Axiom A diffeomorphisms in general is in Bowen [5]).

In assuming that M is a 0-1 we assumed that the rectangles in P were small enough such that
the above intersection was a single point. See Chapter 2 for examples of partitions which are

tolopogically generating and some which are not. We make that notion more formal.

DEFINITION 1.3.13: A partition % is said to be topologically generating if the above

intersection is a single point for any a€ YR

We can now see the importance of the Markov matrix. The behavior of the SFT Ty is
relatively easy to study and gives us information about the dynamics of (TQ,A). Chapters 3
and 4 of this paper are devoted to the study of M. Section 1.4 gives some elementary results

about M.
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SECTION 1.4: THE MARKOV MATRIX
In this section we present a few elementary propositions dealing with the Markov matrix.

PROPOSITION 1.4.1: Let M be the Markov matrix for a hyperbolic toral automorphism A
and a Markov partition ? with r rectangles. Then M" is the Markov matrix for ® under A"

for nEZ+.

Proof: We prove by induction. n=1 is trivial. Therefore, let n=2. We want to compute how
many times R, crosses Rj under A%, If AR, crosses Rj my ; times and AR, crosses R, m;;
times, then we can see that AQR’- Crosses Rj exactly m, M b times. Therefore, AQR‘- crosses
R; exactly ké;mk'jm"'k which is exactly the ,j entry of M2. We now assume our result is true

for any 1<i<n-1 and a proof analogous to the one above will prove the result for M". O

PROPOSITION 1.4.2: Let ¥ be a Markov partition for A with Markov matrix M. Then @ is

a Markov partition for 4~ with Markov matrix M7.

Proof: Because an unstable (stable) eigenvector for A and eigenvalue A is a stable (unstable)
eigenvector for A~1 with eigenvalue %, it is clear that P is a Markov partition for A~1. If
AR, crosses R; k times, then under AL R; will cross R; k times under A~1 s0 that the

Markov matrix for A1 and P is MT. O

PROPOSITION 1.4.3: Suppose there is a ¢€GL(2,Z) such that ¢~ A¢=% where A and B
are hyperbolic toral automorphisms. Then if ¥ is a Markov partition for A with Markov

matrix M, then ¢~19 is a Markov partition for B with Markov matrix M.
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Proof: By ¢~ 19, we mean the image of P under ¢! with ¢_1Ri=R:€¢'1€P. Since ¢ is a
topological conjugacy between the two systems, 9 is a Markov partition. Another way to see
this is that if V is an eigenvector for A with corresponding eigenvalue ), then ¢~V is an

eigenvector for B with the corresponding eigenvalue A. If AR; crosses R;, then is clear that

‘.BR.:I crosses R;. 0



CHAPTER 2 - THE CORE AND THE BOUNDARY

SECTION 2.1: DISCONNECTED RECTANGLES

In this section we begin our study of the core and its structure. As seen from Definition 1.2.7,
the core is a closed, totally disconnected A-invariant set which is finitely presented and hence a
sofic system. Ashley, Kitchens, and Stafford [3] have shown the following about the structure

of the core:

THEOREM 2.1.1: Let A be a hyperbolic toral automorphism. If A is any sofic system such
that 7) A has lower entropy than A and ii) A has fewer periodic points of every period than A

then there is a Markov partition for A with C=A.

In order to see how such large cores can occur, we must first investigate the notion of
disconnected rectangles. We must develop critera for when two rectangles can be considered as

one rectangle and further define the stable and unstable manifolds in such a situation.

In Lemma 1.1.15, we saw that the boundary of any rectangle can actually be viewed as two
sets: an unstable boundary and a stable boundary. In.fact, in the case of the two-torus, the
whole rectangle can be viewed as the product 5‘1;':? xas-‘:? where 31;‘.']’ is one of the two unstable
sides of the rectangle and 8P is one of the two stable sides. It is this notion which will allow

us to define disconnected rectangles.

20
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Suppose the images of two rectangles cross the same rectangles under A. This would mean
that in the Markov matrix, these two rectangles have identical corresponding rows. They have
the same “personality” and we would like to consider them as one rectangle. If they are
adjacent, that is, they share an unstable boundary, then we can simply remove that line (if
that would still give us a Markov partition) and we now have just one rectangle. Stable and
unstable manifolds in this new rectangle cause us no problem. However, if the original
rectangles are not adjacent, we need to be a bit more careful. For this reason, we now define
WY(x,R;) and Ws(x,R'-) in a different way. We begin by defining them for connected
rectangles and then expand that notion to include disconnected rectangles.
DEFINITION 2.1.2: Let R be a closed, connected region in T2 such that R=int(R). Let R be
a closed, connected region in R? such that

a) f{=m

b) 7:R?—T2 maps int(R) —int(R) bijectively

¢) = maps OR— IR surjectively in a finite-to-one fashion.
We call R a covering region for R. The covering region is simply one of the preimages of R

under 7 in R2.

We recall that WY(x) for x€ T2 is the projection of a line in R2 through 7~ 'x. We will call

this line in R? WY¥(x~x).

DEFINITION 2.1.3: Let R be a closed, connected region in T2 with covering region R. For
x€intR with X €intR such that 7(%)=x, define WY(x,R)=m(WY%)NR). Similarly, define

W3(x,R)=m(WS(%)NR).
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DEFINITION 2.1.4: For x,yeT? and %, €R? such that 7(X)=x and 7(¥)=y, we define [x,y)’

to be w(ws(i)nw“(y)). This intersection will always be a single point.

We replace the bracket condition in Definition 1.1.13 by [-,-]". This condition also eliminates
another problem with our other definition. In previous examples, we had ignored the
stipulation that our rectangles be of “small diameter”. In the case of the two-torus, we can see

Markov-like behavior in partitions with large rectangles.

DEFINITION 2.1.5: In a Markov partition, the cardinality of AW“(X,R‘-)nWS(y,Rj) must be

independent of the choice of x€R; and YER;. We call this the ifcardinality.

We now must be sure that the i,jcardinality remains independent of choice when we discuss
disconnected rectangles. There are two types of rectangles which we would like to combine:
those which have identical rows in the Markov matrix as mentioned above and those which
have identical columns, in which case these rectangles are covered by exactly the same

rectangles.

DEFINITION 2.1.6: Two rectangles R, and R; are said to be forward equivalent if rows i and
J in the Markov matrix M are identical. They are said to be inverse equivalent if columns ¢

and j in the Markov matrix are identical.

Suppose R; and Rj are forward equivalent and suppose their images under A both cross R,.
Let R,=R,-URJ-. Then the I k-cardinality is independent of the choice of z€R; and x€R,.
Therefore we want W"(x,R,) to be WY(x,R;) for x€R, and similarly for YER;. We must,

however, alter the definition of W°(x,R,).
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DEFINITION 2.1.7: Suppose R; and R, are forward equivalent and let R,:R'-URJ;. Define
W3(x,R))=R;NA~}(WS(Ux,R,)) if AWS(x,R;)NintR, #0 for x€R, and

similarly for xe R;.

The stable manifold for each point in R, will have two components using the above definition:
one in what was formerly R; and one in what was formerly RJ-. Now, if AR, crosses R,, the
k,kcardinality will be independent of the chojce of x€R; and the new partition with

R,:R£UR5 will be Markov.

Suppose now that R; and Rj are inverse equivalent and let R;:RiURj. By an argument
similar to the one above, we see that Ws(x,R,) is simply Ws(x,Ri) for x€R; and similarly for
yERj.
DEFINITION 2.1.8: Suppose R, and Rj are inverse equivalent and let R,:R‘-URJ-. Define
WU(x,R))=R,NA(W" (A" Ix,R,)) if A~ (WS(x,R;))NintR, #0 for x€R, and

similarly for xGRj.

In this case, the unstable manifold of each point in R, will have two components.

In the above discussion, we never used the fact that the R; were connected, only that they had
well defined stable and unstable manifolds for each point in R,. Using the above process, we

can have rectangles with a countable number of components.

Having completed the introductory material needed to study disconnected rectangles, we now

classify partitions with simple cores using the following definitions.



24

DEFINITION 2.1.9: A Markov partition 9 is said to be core-connected if every rectangle in 9
is connected and ’

1) WY(x)N6yP is connected for all x€l and

i) W3(x)N0sP is connected for all xe¥.

DEFINITION 2.1.10: A Markov partition % is said to satisfy the finite core condition, or

FCC, if every rectangle has a finite number of components and
i) WY(x)N3y?P has a finite number of components for all x€U and

i) W8(x)N 85 has a finite number of components for all x€ 9.

Clearly every FCC partition can be made into a partition which is core-connected by “filling
in” any gaps in the boundary and giving each component of each rectangle a unique labeling.

FCC partitions have a finite core and are often what we want to work with.

SECTION 2.2: EXAMPLES OF THE CORE

The purpose of this section is to give a number of examples of Markov partitions for various

automorphisms and discuss the composition of the core and the structure of the boundary.

Example 1.2.9 gives an example where U=¥=C={one fixed point}. We will often assume
without loss of generality that if C consists of a single fixed point, it is the origin, which we
will denote 0; for if such a fixed point was not at the origin, we could translate the entire
partition so that it was. Also, in diagrams we will often abbreviate R;, A(R;), and A7'(R,)

with just an i when the context is clear.
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EXAMPLE 2.2.1: See Figures 2.2.3-2.2.5. This partition for A=[?}] has U={the periodic
orbit (3,1), (3,0), (0,3)} and $={the periodic orbit (B.1), 32)). We see then that U is not

necessarily equal to §. The Markov matrix is;

11000000 1
0001110710
1000071010
10000000 1
M=|100000000].
01000000 1
11000000 0
101010000
\0 0101110 0/

EXAMPLE 2.2.2: See Figures 2.2.6-2.2.8. .A=[ i ‘01]. This example has €=0 but ;% and
03P are not connected. Notice that we could draw in AB and CD and we would then have
Ou?® and 05P connected. R, also has two components. This partition satisfies FCC but is

not core-connected. The Markov matrix is

(= e L]
= e — ]
Lo — B A — |
L — T R S




Figure 2.2.4: A(®)
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Figure 2.2.5: A~}(®)
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Ry %

Figure 2.2.6: The Partition ? of Example 2.2.2
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Figure 2.2.7: A(P)

3

Figure 2.2.8: A~}(2)
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EXAMPLE 2.2.9: See Figures 2.2.11-2.2.13. A=[33]=[¢1]>. This partition has $={the
two fixed points (,2), (2.2)} while U={two fixed points @.%)» 32)). The Markov matrix is

4
2
1
0

[T — T~ L -
el — R A —)

1
0
0
0

This partition is not topologically generating. Notice that R, crosses itself four times. By
Proposition 1.4.2, we know that .A._IRI also crosses R; four times. Figure 2.2.14 is an
enlargement of R;NAR,. Figure 2.2.15 shows RIF‘I.«{RIH.AQRJ. As we continue this process,
we see that there are points which stay in R, for all forward time. Using a standard
construction, we see that we have a Smale horseshoe with a full four shift contained in R g0
The points which stay in R, for all forward time form a Cantor set of lines in the stable
direction. The points which stay in R, for all backward time form a Cantor set of lines in the
unstable direction. The points which stay in R, for all time are the intersection of these two
Cantor sets of lines which is a full four shift. We now construct a partition with this set as its

core.

EXAMPLE 2.2.10: See Figure 2.2.16. This partition is for 4:[33]:[% {]2 and is the same as
in the previous example except we have broken R up into three rectangles labeled A, B, and C
in the following way. When we consider R;,N AR, we see three regions in R, which are not
covered by AR; which we have labeled A, B, and C. When we consider R;NAR,N.A%R,;, we
see a similar pattern in each component of R;NAR;. In each component, we label these
regions similarly and continue this process indefinitely. Notice that each component labeled A
is forward equivalent to every other component labeled A and similarly for B and C.

Therefore, each point in A has stable manifold in every component of A. This partition has



Figure 2.2.12: A(%®)
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Figure 2.2.13: A~}(®)

R, n AR,

R.n AR

R|n Ael

Rin AR,

Figure 2.2.14: R;N AR,
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Figure 2.2.15: A=R;NAR,NAR,
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A
M—— — — — 2]
- s
A
A
S B
(4
B
A
- —— B
c
C.
A
— B
c

Figure 2.2.16: The Labeling of R, in Example 2.2.10
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$={the two fixed points (%,2), (2.2)} while U={full four shift}. The Markov matrix, with

rows 1, 2, and 3 corresponding to A, B, and C is

I S -
I A A )
R — R T G
ORI — T~ B R R
e — I CI— T — T
T — T — S S PR

EXAMPLE 2.2.17: See Figure 2.2.18. A=[§§]=[ﬁ]z. This partition has ={the two fixed
points} while U ={full four shift}. The only difference between this partition and the previous
one is that we have labeled the components of R, differently. We label {all uncovered
components in R;—AR; A}, {all uncovered components in R;—AR,—A%R, with A,},...,
{all uncovered components in RI—.ARI—.A2RJ-...-—.A"_"R.I with A, _,}, and {all uncovered
components in R;— AR, —A?R,—...— A™**R with A, for meZ and 0<k<n—1}. The

Markov matrix for n=3 is

(— I .- B S — N —
[— T — T — Y — N — -
oo O o s o
LCREE — - - S )
e — T — I —
(=T — N — N




'W
|

:="""AL

Figure 2.2.18: The Labeling of R, for n=2
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EXAMPLE 2.2.19: A:[E%J:ﬁ }]2 Let F be any pxp matrix with row sum 4. We can

label the components of R; such that the Markov matrix is

£, f,,0 2 0 1

M f,1 fopp 2 0 1

5 2 0

S 0 0 0

2 1 0
P

where Zsij=mi+1j where m;, is an entry in M from Example 2.2.9 and 2<i<4. If p<3,

j=1

then we label components in a manner similar to the above examples. We must always be
sure, however, that we label in such a way that components with the same label are forward
equivalent. If p>3, then label all uncovered components of RI—.ARI—.,'!.2RI--—...-—.»{"I"\’.I the
same, say B, until the number of uncovered components of R;—AR;—A%R;—...—A*R,

exceeds p. Figure 2.2.20 is a labeling which gives

0 1 3
F= 1 1 2
0 0 4

EXAMPLE 2.2.20: See Figures 2.2.21-2.2.23. .A:[H] This example shows that rectangles
with a non-finite number of components may still have a simple core. The region labeled A in
Figure 2.2.21 is broken up as shown in Figure 2.2.23. In this case, the core is simply the

origin. The Markov matrix is



0 1 0 1 1
0 0 1 1 1
M= 1 0 0 1 1
1 0 0 1 1
0 0 0 1 1
Aa
— —_— A-.
y
A,
As
— .=— — _a----A1
A
Az
A
——— — A;
Ay
AB
Aa
S M — "'A,
Az

Figure 2.2.21: The Labeling of R; in Example 2.2.19
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R,

Rz

Figure 2.2.22: The Partition % of Example 2.2.29

Figure 2.2.23: A(P)
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Figure 2.2.24: The Labeling of A
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CHAPTER 3 - THE EIGENVALUES OF THE
MARKOV MATRIX

SECTION 3.1: PRELIMINARY LEMMAS
The goal of the next two chapters is to say what we can about the Markov matrix M for FCC
partitions. The theorem below tells us about the eigenvalues of M. We begin with a series of
technical lemmas. First, we need the following lemma due to Matthew Stafford.
LEMMA 3.1.1: [12] Let h:B—B, B finite. Then every eigenvalue of

h.:Hy(B)—Hy(B)
is either 0 or a root of unity. The multiplicity of the 0 eigenvalue is equal to the number of
pre-periodic points in B. The multiplicity of the eigenvalue 1 is equal to the (# of periodic
orbits in B)—1.
Proof: 1If B is a finite union of periodic orbits, h|g can be represented by a permutation

matrix. (Think of each point in B as a basis element.) Clearly, this permutation is cyclic if

and only if B consists of a single periodic orbit.

40
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If B contains pre-periodic points as well, h|g can be represented by a matrix of the form

[P 0 0
* 0 :
R= 0
_t * GJ

where P is a permutation matrix representing the action of h on the periodic points in B. The
rows below P represent the action on the pre-periodic points in B. (Here, one must be careful
about the ordering of the basis elements: if z and y are pre-periodic and h(z)=y, y should be
listed before z.) It is clear from the block form of Q that xqQ(t)=xp(t)(—t)", where n is the
number of pre-periodic points in B. Note that the multiplicity of the root 1 in xp(t) and thus

in xq(t) is equal to the number of periodic orbits in B.

Let by, by, ..., b,_; be the elements of B. h induces endomorphisms of Hy(B)=Z” and

H, (B)=z""'. with respect to the basis by, b,, ..., b the former is represented by the
o 0 1

p=D
. : . X -1
matrix Q described above. Let Q' represent the same transformation in the basis b

b;—bg, by—by, ..., b,_;—by. Q' is of the form

To prove this, it suffices to show that V=span{b;—b,, b,—b,, ..., b,_,—b,} is an invariant

p=1
subspace under h.. h.(b;—by)=h(b;)~h(b,). If h(b;)=h(b,), this difference is 0€V.
Otherwise, h.(b;—by) is in the set (b;,—b;| i#7}, which is clearly contained in V. Thus h.

maps the basis elements of V into V; it follows that h.(V)CV.
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The reason for this change of basis can now be make clear: b,—b,, by—by, ..., b,_;—b, form
a basis of ﬁO(B) and h,: ﬁO(B)—bﬁo(B) is represented by the submatrix F (of Q' above) in
this basis. Further, Xp(t)=xq/(t)/(1=t)=xq(t)/(1—t). Thus every eigenvalue of F must
be 0 or a root of unity. The multiplicity of the eigenvalue 0 for the pxp matrix Q is not
decreased when passing to the (p~1)x(p—1) matrix F. But the multiplicity of the eigenvalue

1 is one less for F than for Q. This verifies the claim about the multiplicities of the

eigenvalues 0 and 1 and completes the proof of the lemma. O

Let ){=T2—t9l:‘.3’I and A:Xﬂas@zas?}’-—&;"ﬂ‘. By 61;@ we mean consider P as a finite
number of line segments and 3,;9‘ is then the union of the interiors of those line segments. If

0y 2 is connected, then 6,_; P is just Oy P without the endpoints.

DEFINITION 3.1.2: We call a point where 8y% and 8;% intersect a crossing if the line

segments cross each other completely. If this is not true, we call the intersection an endpoint.

LEMMA 3.1.3: Let 9P be a Markov partition with r rectangles for a hyperbolic toral
automorphism A. Let X and A be as defined above. Suppose that 8,9 has ny connected

components and 9P has ng connected components. Then A has r—n, connected components.

Proof: =~ We begin by proving the lemma under the assumption that both y?® and
03P are connected. In this case, ny=ng=1 and we are trying to show that A has r—1
connected components. The best way to see this is to visualize yourself walking the length of
9s® looking say to the left, counting rectangles once you have crossed them. You will pass
each rectangle once. Each rectangle will be counted at a point where Ou®P crosses 93P

completely (a crossing) except two; one will be counted at a point where 0y ?® has an endpoint
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in 0% and the last one will see an endpoint of 93P in 8,%P. Hence r={number of
crossings}+2 and {number of crossings}=r—2. Also, the number of components of A is

{number of crossings}+1. Therefore, the number of components in A is r—1.

Now suppose that 8yP and 3P are as in the statement of the lemma. Again, walk along
each piece of 95P counting rectangles as you cross them. Be careful to look the same way as
you cross each piece. All will again be counted at a crossing except ny +ng of them: those will
be counted at endpoints. Therefore, r={number of crossings}4ny+ns and {number of
crossings}=r—ny—ng. The number of components of A is equal to {number of

crossings}+ng, hence A has r—ny, components and the lemma is proven. u}

LEMMA 3.1.4: Let B={m points in T2, b,, b,, ..., bm for m#0}. Then

H,(T2-B)=2™*".

Proof: Consider the polygonal representation of T2—B shown in Figure 3.1.5. Let §,={a
small disc containing b, in its interior} and let o={the boundary square in the polygonal

representation of T2—B}.

>
® @
A S, st N
® ®
s"’ ~ 53

Figure 3.1.5: T2—B
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Let X,={T2—0} and let X2={T2—‘_§16|-}. X,UX,=T?—B so that we can use the Mayer-
Vietoris sequence from algebraic topology. Let X=X,nX,. X is homologous to an m-
punctured disc and hence to xS" 80 ﬁz(X)=[), ’ﬁl(X)=Zm, and ﬁo(X)z{). X, is also
homologous to ¥51 and therefore has the same homology as X. X, is homologous t.om\:'HSI
hence f{'ﬂx,):l”‘“. Also ﬁz(Tz—B)=0. We therefore see the following Mayer-Vietoris

sequence:

EI‘;'(Tz—B) = ﬁ1(x) < §1(X1)®ﬁx(xz) = ﬁ1(T2—B) = ﬁo(x)

0 — zm —_ ™ & Z’“'”_p zm+f — 0
We conclude then that H,(T?—B)=Z™*" as desired. 0

LEMMA 3.1.6: Let F be the nxn matrix:

0 1 0 0
0 1
Fp=| : : . . 0
0 o -~ 0 1
| =1

The characteristic polynomial of F is (—1)“()«n+}un_1+. A1)

Proof: By induction. The characteristic polynomial of

F2=
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is xF2=A2+,\+1 which is what we wanted. So suppose the lemma is true for n—1. We will

show it is true for n. If F is the nxn matrix above, then

—A 1 0 0
0 - :
Xp, = 0
0 0 ) 1
-1 -1 —x-1

==dxp DD =()ROm L)1)
n_
which is what we wanted. ]

LEMMA 3.1.7: Let F;, be the nxn matrix

[0 1 0 0
0 1
Fp= 0
0 0 1
1 0 v e 0 J

Then the characteristic polynomial of Fy, is (=D)"(A"—-1).

Proof: By induction. For F2=[%,], xF2:A2—1. So assume true for n—1. Then

-2 1 0 0
0 -x 1

anz 0 o0
0 -A 1
1 0 0 A
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-2 1 0 0
0 ~Xx 1 :
== i 0 [4(=prH!
& i
0 0 —2A
=(—-1)"(A"-1). o

SECTION 3.2: THE EIGENVALUE THEOREM

We now state and prove the main theorem about the eigenvalues of the Markov matrix.

THEOREM 3.2.1: Let P be a Markov partition for A where A is a hyperbolic automorphism
of T2 and let ® sa.tisfy FCC. Let M be the Markov matrix for ?. If Tr(A4)>0, then the
eigenvalues of M are Ay, Ag, together with 0’s and roots of unity. If Tr(A)<0, then the

eigenvalues of M are — Ay, —Ag, together with 0’s and roots of unity.

Proof: First, we will give the proof under the further assumption that both 8,% and 85% are

connected.

Suppose P has r rectangles, and that Tr(A4)>0. Let X=T2—5,%P, and A=XNJsP. Let A
be the map induced by A on X. By Lemma 3.1.3 A has r—1 components and therefore is
homologous to r—1 points. X is homologous to Tz—{one point}. We know by Lemma 3.1.4
that ﬁl(A)zﬂ, ﬁl(X)=Zz, ﬁo(A)zlf‘g, and ﬁo(X)zﬂ. The exact relative homology

sequence for a pair (X,A) then gives us the following commutative diagram:



47

M,4) - 0,00 & H,XA) - Ho4) — HoX)

0 — y &4 — y Al - 1?7 5 0
| A= M |F
0 — y & -‘E 7 - I 5 0

Because Z™ is free abelian for m>0, the top line of the above sequence is split exact and hence
ﬁl(X,A) = Z". A, is the map induced on i{vl(}{). by A which is in fact A itself. One set of
generators for ﬁl(X,A) is a line segment across each rectangle in the unstable direction so the
induced map on homology is just M. F is from Lemma 3.1.1. Because the top line of the
above sequence is split exact, with possibly a different choice of basis, M can be written in the

form:

A 0
* F

Thus the eigenvalues of M are exactly the eigenvalues of A (A, and Ag) together with the
eigenvalues of F (roots of unity and zeros) when Tr(A4)>0. When Tr(A)<0, the induced map
on ﬁl(X,A) is —M (because Ay <0, A. reverses the orientation of the generators in T—fl(X,A))
so in the diagram replace M with —M and the theorem follows similarly, thus concluding the

proof for our case, namely 8,9 and 8% being connected.

We use the above idea and the following lemmas to complete the proof.



48

LEMMA 3.2.2: Let B={{A'p}"0}, {4ip,}"2" o)1 wh T2
.2.2: Le _{{ Pili=or {A'P2li=g r-» {A'Pm}i=p where p,€T is an A-
periodic point of period nj} be a finite set comprised of m periodic orbits of . Let A be the
map induced by A on T2—B. Let A. be the map induced on ﬁl(Tz—B) by A. Suppose that
Au and Ag have the same sign. Then the eigenvalues of A. are {the eigenvalues of A} plus
{all the n;th roots of unity except 1 for 0<j<m (counting multiplicity) and the multiplicity of
the eigenvalue 1 is m—1}. If Ay and Ag have different signs, then we see {minus all the n;th

roots of unity except —1 for 0<j<m (counting multiplicity) and the multiplicity of the

eigenvalue —1 is m—1.}

Proof: Suppose that Ay and Ag have the same sign. We first consider a single orbit of period
n with B={.Aip}=:t. By Lemma 3.1.4, we see that ﬁl(Tz—B)=Zn+1. We choose our
generators for ﬁl(Tz—B) as follows: a and B, the generators of Fﬁl(Tz), and v; for 0<i<n-2
where v, is a small circle around Aip oriented clockwise; see Figure 3.2.3. This is clearly a set
of generators as none of them are homologous. Notice that if 7,,_, is a circle around A" !p,
then v, 1=c+f—a—B—v;=7;—...—Yp-2-

A

Figure 3.2.3: Generators For ﬁl(TQ—B)
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The action of 4. on « and S is the same as the action of A, that is, A itself with perhaps a

few of the v; also. I.qri:‘y‘“ for 1<i<n—2 which gives A. the following form:

A 0
* 0 1 0
A= o0
0 0 1
* =1 -1

whose eigenvalues are as desired by Lemma 3.1.6.

Suppose now that B is as given in the statement of the lemma. We choose generators in the
same way leaving out only one point in B, WLOG assume this is p;,. We refer to the circle
around Alpj as 7;. Clearly I,‘j’i,j:"{i_!_j’j for 0<i<n;~1 ((nj—l)+1=(]) and 2<j<m,

while the action on the 7,1 1s as described above. We then see that A. has the following form:

A 0 0
— * FI E
A.= where
0
* 0 Fm
L -
[0 1 0 0 |
0 1
F,= : 0 |and
0 0 0 1
-1 -1
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0 1 o 0
0 1
F,= 0
0 0 1
1 0 s wee D J

for 2<+<'m which yields the desired eigenvalues by Lemmas 3.1.6 and 3.1.7.

If Ay and Ag have different signs, then the orientations of the generators 7; are reversed so that

we see —F; in each case and hence have minus the eigenvalues. 0 (Lemma 3.2.2)

We recall Definition 2.1.7 and expand upon that notion. For x€C, if W¥(x)Nd, P has more
than one component, these components differ in nature. One, the component containing x,
gets mapped into itself under A ™" for some n while the others do not. We therefore make the

following distinction.

DEFINITION 3.2.4: Let I be a component of W¥(x)N8,% (or WS(x)N85P) for x€C. We

say that I is essential if x€I. Otherwise, we say that I is non-essential.

If 0P has only essential components, then T2—8,_:‘5P is homologous to T2—B where B is a
finite number of periodic orbits and the previous lemma applies. If 8% has some non-essential

components, we must explore what this will do to A..

LEMMA 3.2.5: Each non-essential component in the unstable boundary of % contributes a

zero to the eigenvalues of A..
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Proof: We begin by filling in any gaps in 82 and proceed by induction. Each component in
Ou? is now connected and Lemma 3.2.2 applies. The image of at least one of the former gaps
in 8y?P does not intersect 61;??. We can therefore remove a piece of 8, creating this gap,
call it G. We now need a new generator in ﬁI(TQ—BJ‘?) and for this generator we choose a
loop around the new non-essential component we created, call it y; see Figure 3.2.6. Now,
because A8y PD8yP, the image of the points in G (GCT2—0,%P) must also be in T2—9, P
while A(TQ-—?}J':'P)NG:G (the preimage of G is contained in 3.;‘3‘) hence ¥ is now
contractable to a point and hence equal to zero in ﬁl(Tz—BJ@). v has then been mapped to
zero in ﬁl(Tz—Bl:@) hence A, has a new column of zeros and hence a new zero eigenvalue,
We now create all the former gaps one by one in a like manner and see that each one gives A,

another zero eigenvalue. 0 (Lemma 3.2.5)

\'d

Figure 3.2.6: The New Generator
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We now complete the proof of the theorem.

Suppose that ? satisfies FCC and Tr(.A)>0. This means that U and ¥ are a finite number of

periodic orbits and suppose 8,% has n; components. By Lemma 3.1.4, ﬁl(X)=2n"+1.

r-ny-1

ﬁo(A)=Z by Lemma 3.1.3. By Lemmas 3.2.2 and 3.2.5, A. has eigenvalues )y, A,

zeros and roots of unity. We see the following commutative diagram.

M@A) - 5,0 & H,&A) - HyA) — HoX)

r-Ny- 1_’ 0

K - VRS g Lz
| 4. IM | F

0 = znu+1_’ zr - zr-nu-l_’ 0
Therefore, the eigenvalues of M are exactly the eigenvalues of A together with the eigenvalues
of F and the proof is complete for Tr(.4)>0 with the proof for Tr(A)<0 following in a similar
manner. O
The proof of this theorem gives us the following two results:
COROLLARY 3.2.7: Let P be a Markov partition for A with r>2 rectangles, and suppose

that P satisfies FCC. Then the Markov matrix M is similar over Z to an rxr matrix of the

following form:
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A 0 0
* A .

3 0
* * A

where the eigenvalues of the non-zero A; are either +{all the pth roots of unity for some p} or

+{all the pth roots of unity except 1 for some p}.

Proof: By noting that F in the above proof has as eigenvalues only roots of unity and zeros,
the corollary follows directly from the proof of Theorem 3.2.1 and the block triangular form

from linear algebra [8]. D

Roy Adler, in an as yet unpublished work, proved that every toral automorphism A has a
Markov partition with two rectangles. He in fact proved the existence of a Markov partition
for which the Markov matrix is A itself (A>0). We use the first result to give us the

following corollary which is Corollary 3.2.7. in the 2x2 case:

COROLLARY 3.2.8: Let P be a Markov partition for A with two rectangles and Markov
matrix M. Then if Tr(A)>0, there exists ¢ € GL(2,Z) such that ¢~ 1A= M. Similarly, if

Tr(A)<0, there exists ¢ € GL(2,Z) such that ¢~  Ad= —M.

Proof: Letting X and A be as in Theorem 3.2.1, with r=2 and Tr(A)>0, we see the following

diagram:
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0,4 - 0 & H,xA) — HyA)

0 - 22 o 1 o 9

¢ is an isomorphism hence in GL(2,Z) and the corollary is proven for Tr(A)>0 with the proof

for Tr(.A)<0 being entirely similar. O

SECTION 3.3: EIGENVALUES AND THE CORE

We begin with a few examples of the results presented in the last section.

EXAMPLE 3.3.1: Recall Example 2.2.1. The eigenvalues of M are:

gaie o de el S 1 60,000,
We see Ay, Ag, zeros and second and third roots of unity as expected.

EXAMPLE 3.3.2: Recall Example 2.2.2. The eigenvalues of M are

{318 385 4 ).
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EXAMPLE 3.3.3: Recall Example 2.2.9. The eigenvalues of M are

(158, 235 4 1,

All of the above examples fit the hypotheses of Theorem 3.2.1. Examples 2.2.10, 2.2.17,

2.2.19, and 2.2.21 do not fit the hypotheses.

EXAMPLE 3.3.4: Recall Example 2.2.21. The eigenvalues of M are

3446 3-Y5 -14i{3 -1-i3
{ 2 2 2 1 2 ]‘

1

In this case, even though the core is a single fixed point, the eigenvalues reflect a more

complicated structure, possibly a period three orbit.

EXAMPLE 3.3.5: Recall Example 2.2.10. The eigenvalues of M are

(388 7305 4 41, 1)

EXAMPLE 3.3.6: Recall Example 2.2.17. The eigenvalues of M are

7435 7-3Y5 -4+4iV3 -4-4i{3
(305 7345 -444i3 443y 4y

EXAMPLE 3.3.7: Recall Example 2.2.19. Since F has row sum four, four is an eigenvalue of
F. The eigenvalues of M are

{ngﬁ‘ ?;3-2—43, 1, 1, {all the eigenvalues of F except the number 4}}.
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To verify this we see that by conjugating by elementary matrices we can get M to the

following form:

(' B oo e O)
*x 4 2 0 1
M=|: 2 5 2 0
1 0 0 O
\x 0 2 1 0)

We can then see that the eigenvalues of M are as claimed.

It is clear from the proof of Theorem 3.2.1 that the composition of the core has a lot to do
with the eigenvalues of M. A periodic orbit of period p in 4l adds the pth roots of unity to the
eigenvalues of M (modulo some ones) if A;>0 and some of the 2pth roots of unity if Ay <0
while a periodic orbit of period p in ¥ adds the pth roots of unity if Ag>0 and all the 2pth
roots of unity if Ag<0. Because of this we, given the trace and the determinant of the matrix
(which in turn determine the signs of A, and Ag) and the core of the partition, we can
determine which eigenvalues can occur. Unfortunately, we cannot determine the exact contents

of the core from the eigenvalues.

EXAMPLE 3.3.8: Let 9, be a partition with a C=9U=Y¥={one period three orbit} and a
crossing at each point in € and no other crossings. Assume that A, and \g are positive. From
Section 3.2, we can conclude that the eigenvalues of M are A, Ag, 1, and each of the third
roots of unity except 1 will occur three times (once from A. and twice from F). Let P, be a

partition for the same system with U={one period three orbit} and ¥={two different period
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three orbits not in U} and suppose that there are no crossings. This system will have the same
eigenvalues as P, (the 1 and the third roots of unity twice from F and the roots of unity
except one once from A.). We see two partitions with different cores giving the same

eigenvalues in the Markov matrix.

By looking at the eigenvalues of M, it is hopeless to try to determine the composition of U and
¥. We cannot even determine exactly what is in the core unless we make further assumptions.
For example, if one assumes that we have a crossing at each point in the core, FCC, and that
both eigenvalues are positive, then each orbit of period p in € causes the pth roots of unity to
surface three times in the eigenvalues of M (modulo 1's); once in A. and twice in F.
Therefore, given a set of eigenvalues we can figure out exactly what was in the core. We can
develop similar algorithms for cases where both eigenvalues are not positive and a constant

structure is found at each point in €.

A question which arises at this point is whether or not we can detect the presence of large cores

or rectangles with infinitely many components. The answer to this question is no. If we

consider Examples 2.2.19 and 3.3.7, the eigenvalues of M are {7+2\G, 7-3’;{3, 1,1, 1 —1k

These suggest that there may be some fixed points (we don’t know exactly how many because
of crossings and such) and a period two orbit. There is nothing to suggest that there is a large
core as there is in Example 2.2.17 (roots of unity times four). Hence, the presence of “strange”
eigenvalues does indicate that there is a non-finite core but it is not a necessary condition.
Sometimes, we can use the number of rectangles present to detect complicated cores. The

following proposition deals with the minimum number of rectangles for a given core.
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PROPOSITION 3.3.9: Let A be a hyperbolic toral automorphism. If a core-connected
Markov partition ® for A has C={a single periodic orbit of period p}, then the minimum
number of rectangles for P is r=2p unless both A, and \g are both negative in which case the
minimum number of rectangles is r=3p. If C={periodic orbits of periods p,, Pas--s Py} then

the minimum number of rectangles in P is r=3p,.

Proof: We know from the proof of Lemma 3.1.4 that if 8,® has n, components and 85% has
ng components then r=ny+ng+{number of crossings}. If we assume that €={a single orbit of
period p} and at least one of the eigenvalues of A is positive, then construct a partition with
no crossings. We must have each point in this orbit in both A and ¥. However, since one of
the eigenvalues of A is positive, we need only have an endpoint at each point in €. Out of
necessity, for each point in C there will be one component in ;% and one component in 95%,
hence we have 2p rectangles. If both of the eigenvalues of A are negative, then out of necessity

we have a crossing at each point in C hence we have 3p rectangles.

If C is a finite number of periodic orbits, construct a partition with UWN¥=@ and no crossings.
This partition will have one component of % at each point in € and hence the number of

rectangles is ) p;. o

If we now examine Example 3.3.4, we see that the eigenvalues of M suggest a single period
three orbit in €. However, our previous proposition asserts that the minimum number of
rectangles for a single period three orbit is six. Hence, we must have had a partition which is

not core-connected.



CHAPTER 4 - THE TWO RECTANGLE CASE

SECTION 4.1: SOME ALGEBRAIC RESULTS
A natural question to ask at this point is whether or not the converse of either Corollary 3.2.7
or Corollary 3.2.8 is true. In this chapter, we examine the 2x2 case and make a conjecture

about the r rectangle case. In order to do so we need the following algebraic results.

PROPOSITION 4.1.1: Let A>0 be an element of GL(2,Z) and suppose A# [Ej?] and A#
[‘1’(1,] Then A has a dominant row and a dominant column; i.e. the first column of A = [:ﬂ

is dominant if a>b and ¢>d and similarly for a row being dominant.

Proof: Suppose A does not have a dominant column. Then either i) a>b and c<d or ii)
b>aand d<e.

Case 1) a>b and c<d = a2b+1 = ad>bc+c = ad—be>c. Therefore, since det(A)==+1
and ¢>0 we have that ¢=0 = a=d=1 = b=0 (since a>b) => A= [35?] which is a
contradiction.

Case i) b>a and d<c = b>a+1 = bc>ad+d = bc—ad>d. Therefore, since det(A)=+1
and d>0 we have that d=0 = b=c=1 = a=0 (since b>a) = A= {?8] which is a

contradiction.

The proof for dominant rows is entirely similar. O

59
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PROPOSITION 4.1.2: Suppose AE€GL(2,Z), 420, A# [39]. Then

mrlx; 1
“‘=H[1' 0]
1=1
where x;=0 or 1 for 1<i<n.

Proof: We can see the above by observing the following:

ab| |[x1]cd
cd| 7|10}y z
where if a>c and b>d then let x=1, y=a—c, and z=b—d thus reducing the entries in the

dominant row, Otherwise let x=0, y=a, and z=b. We can then view this factorization as a

sequence of 1’s and 0’s {x‘-}?_ , and this factorization is unique up to two consecutive 0’s

(987 =[39). o

DEFINITION 4.1.3: We call {xl-}:.; , the defining sequence for A. From here on we will
denote [?5] as z, [}5] as y, and [? i] as y’. We can also think of the defining sequence as a

sequence of z’s and y’s.

EXAMPLE 4.1.4: Using the above algorithm, we can see that the matrix [;?] has defining

sequence yzyzyyry or 10101101.

DEFINITION 4.1.5: We define a ghear matrix to be a matrix with ones on the diagonal and a

single one off the diagonal while all other off diagonal entries are 0. Note that if a shear

matrix has a one as its #,jth entry then its inverse has a minus one as its i,jth entry.
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PROPOSITION 4.1.6: Under the same hypotheses as in Proposition 4.1.0, we see that A also
factors as follows: If A# 1z, then .A=ﬁ M; where M, is a 2x2 shear matrix for 1<i<m—1

i=1

and Mp, is either a 2x2 shear matrix or y or ¢/.

Proof: We can see that zy=y'z, yz= [6i], a shear, and y'z= [}?], a shear, Given the
defining sequence for A, {xg}:; p We replace I’s with y’s and 0’s with z’s. Now using the first
relation above, put the sequence in the form 8;X8X... 8. XS, /S, . 5...8m Where s; can be either y
or ¢ for 1<i<m. (If there are no z’s in the sequence, we let k=0.) If m=k or m=k+1 then
we are done. If m>k+1 then insert zz between Sp42j—1 and s, for ISjSI_“‘T“EJ (where
[r]={the largest integer smaller than r}), replace z8;4; With sz where s is either y or ' and

we are done. o

EXAMPLE 4.1.7: For the matrix [;ﬂ, we rewrite the defining sequence from Example 4.1.4
as yryzyzy'y by replacing the sixth and seventh entries, yz, with zy’. We then insert zz

between the y and 3 yielding yzyzyry' zzy =yryzyzy' zy' z= [& }]3 [} ?]2
We state the following definition which is used in the proof of the next proposition:

DEFINITION 4.1.8: Two integral matrices S and T are said to be shift equivalent over Z if
there exist integral matrices U and V and leN such that
SU=UT, VS=TV, UV=8/, and VU=T'.

lis called the lag of the shift equivalence. We can similarly define shift equivalence over Z+.
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PROPOSITION 4.1.9: Suppose A and B are non-negative, hyperbolic matrices in GL(2,Z).
The following are equivalent:
i) A and B are similar over Z
i1) There is a matrix P>0, PEGL(2,Z), such that P lAP=3
i11) The defining sequence for A is a cyclic permutation of the defining

sequence for B up to two consecutive 0’s.

Proof: i1)=> 1) is obvious.

ii1)=> ii) If the defining sequence for A is {x,—};;j and the defining sequence for B
is XXy 5. XnX Xy, X, for 1<k<n then P=x,X, ;... Xn is the desired matrix.

i)=>iii). One way to do this is to see that i) = shift equivalent over Z = shift
equivalent over Z = iii). To show the first implication, if there is a ¢€GL(2,Z) such that
6" 1A4¢=% then S=A, T=DB, U=¢, and V=¢"1A is a shift equivalence with lag 1. The
second implication is a result of Kim and Roush [7]. We then need to prove the third
implication. This proof is due to Charlie Jacobson. Suppose A and B are shift equivalent and
that A and B have defining sequences {a;}?___f and {bi}?:-r Then there exist U, V and [ as in
the definition above. Note that det(U)=z=1 and det(V)==1 so that U and V have defining
sequences {u‘-}f: 4 and {".‘}L P respectively. By the uniqueness of these factorizations, v;=a,
and u,—a, so that not both v; and u, are z. Then the defining sequence for UV is {u;, uy,
e Upy Vg, Vg, .ouy Vo). Therefore, p+g=mk. Similarly p+ ¢=nk, so m=n. Since UV=‘EBI,
the uniqueness of the defining sequence implies that up=b, for some 1<r<m. Since VU:.AI,
a;=b,.; ay=b,ys ..., an—r=bn, a,_,,;=b;, ..., aa=Db;. Hence, the defining sequence for

A is a cyclic permutation of the defining sequence for B and the proposition is proven. O
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Note: This proposition can also be proven directly by letting t:r)=|:'01 cf] and showing that the
group generated by z, y, and w has a solvable word problem and is in fact GL(2,Z). Then
using this machinery and a canonical form for any element of GL(2,Z) involving z, ¥, and w,

show 1) <> new canonical form is cyclic permutation & iii).

EXAMPLE 4.1.10: The defining sequence for [3' ;] is yryyzyyz which is a cyclic permutation
of the sequence for [; ?] in Example 4.1.4 hence the two matrices are similar over Z. The
defining sequence for [.{ ﬂ is yzyryryryryy and therefore [-{?] is not similar over Z to either of

the above matrices although they are similar over R.
SECTION 4.2: PARTITIONS WITH TWO RECTANGLES
We are now ready to begin examining partitions with two rectangles with the following lemma.

LEMMA 4.2.1: Let ¢ be a Markov partition with two rectangles for A with Markov matrix M
and suppose there is a shear matrix S and a matrix M'Zﬂ such that S'MS=M/'. Then there

is a Markov partition ¥’ for A with Markov matrix M'.

Proof: We give the proof for S=[6§] and Tr(A)>0 with the proofs for [}?] and Tr(A)<0
being similar. Suppose first that C(®)=origin.  Comsider S~MS=[ 3 #]2i]31]
=[ eze “‘ﬁig"i]:M'. In order for this matrix to be non-negative, row 1 must be the
dominant row in M. Row 1 being dominant means that A(R;) crosses each rectangle at least
as many times as A(R,) which says that R; is strictly longer than R, in the unstable

direction. If R; is strictly longer than R,, we can divide R; into two pieces, R; and L as

shown in Figure 4.2.3. To divide R, in this manner, draw R; and R, with their stable sides
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farthest from the origin side by side (Figure 4.2.2). We then extend segment CB to CD and

now have a Markov partition 9 with three rectangles, R}, L, and R,. The Markov matrix for
g I 2

T is

For row 3, A(R) will cross R, the same number of times as in P, and L and R/, the number
of times it crossed R; in . For row 2, A(L) will cross the same rectangles as A(R,); because
of the expansive nature of the unstable boundary, the boundary between R, and L (segment
AB) gets mapped to the interior of any rectangle it crosses (see Example 1.2.9). A(R}) will
then cross everything that R; used to cross that isn’t crossed by A(L). We have then seen
that S~1MS being non-negative (in particular, multiplication on the left by S'l) means that
we can split R; into two rectangles, one of which has the same “personality” as R,. We now
can remove segment AB from T and get a new partition 9’ (Figure 4.2.4). This is possible
because A(AB)NJ,P=0. We claim that the Markov matrix for P’ is M. The rectangles for
P/ are R2=R2UL and Ri. R; will be crossed by everything which crossed either R, or L
hence column 2 of M/ is {{column 2 of M(7)}+ {column 3 of M(7)} with either the second or
third entry deleted}. Column 1 of M’ is {column 1 of M(T') with either the second or third

entry deleted}. Hence,

a—c a—c+b—d
¢ d+c

This concludes the proof for €(®)={origin}. If C={any fixed point not the origin}, then by

translation the above proof works. We then must deal with the case when (%)= {two fixed
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Figure 4.2.2: Lining Up the Partition

Figure 4.2.3: The New Partition I -

R»
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R\

Figure 4.2.4: The New Partition %'

c

Figure 4.2.5: Lining Up the Partition
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points}. Notice that if there are more than two fixed points in the core or any periodic point
of higher period, then there are more than two rectangles (Proposition 3.3.9). We will assume
in our diagrams that one of these fixed points is the origin. The only part of the above proof
which we must modify is how to divide R,. First, we must have U={one fixed point} and
§={the other fixed point}. We will assume WLOG that ¥=0 and U={the other fixed
point}, call it Q. We want to draw P so that there is no fixed point on AB as in Figure 4.2.5.

It is then possible to extend CB to CD and obtain a partition 9, then remove AB as above. O

EXAMPLE 4.2.6: Consider the partition in Figure 4.2.8 for the matrix [§3]. The Markov
matrix for the partition is the original matrix [i %] Since [25 —11:[? %:[3}]:
[}%] which is non-negative, we should be able to perform the above operation. We extend
segment CB to CD to get a new partition shown in Figure 4.2.10. The Markov matrix for

this partition is

1 2 2
M=| 1 2 2
0 1 1

We can then remove segment AB to obtain the partition in Figure 4.2.11 and the Markov

matrix for this partition is M:B 3]

We use the lemma to prove the following proposition which will in turn give us the desired

theorem.

PROPOSITION 4.2.7: Let ¥ be a Markov partition with two rectangles for A with Markov
matrix M and suppose there is a matrix M'>0 and ¢ € GL(2,Z) such that ¢~ M¢= M.

Then there exists a Markov partition %' for A with Markov matrix M'.



Figure 4.2.8: The Partition ? of Example 4.2.6
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Figure 4.2.9: A(P)
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Proof: Suppose such a ¢ exists. Then by Proposition 4.1.9 there exists a matrix P € GL(2,Z)
with P>0 such that P"'MP= M'. We know by Proposition 4.1.6 that P=M;M,...M; where
one of the following is true: i) k=1 and M;= z; i) M, is a shear matrix for 1<i<k; or ii1)

M, is a shear for 1<i<k—1 and M, is either y or y' where z and y are as in Definition 4.1.3.

Case 1): Conjugating M by z corresponds to relabeling the rectangles; i.e. R; as R, and R, as

R,.

Case 11): We know by Lemma 4.2.1 that conjugating M by a shear matrix is “legal” as far as
partitions go. Therefore, since PIMP= MIIMI_II..JM]'IMI\JI,...l'tdlk_‘.M‘E we need only show
that M;..M7IMM,. M;>0 for 1<j<k. It is sufficient to show that M7'MM;>0. So,
suppose P"!MP>0 with P as above. Note at this point that multiplication on the right by a
shear matrix does not change the dominant row of M and hence MP and M have the same
dominant row. Therefore since My'...M7*MP>0, we know that M7'MP>0. Since M;! is
the inverse of a shear matrix and MP and M have the same dominant row, MIIMEO also.

Hence M71MM,>0 which concludes case ii).

Case u1): If M;= yor y' then let P'= zP. Now P’ is a product of shear matrices and reduces
to case ii). We see, however, that P'"IMP'z is just P-IMP and hence by case i) we have

proven our proposition. ]

We now give necessary and sufficient conditions on the Markov matrix for a hyperbolic toral

automorphism.
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THEOREM 4.2.12: Let A be a hyperbolic automorphism of T2, and let M be a non-negative
2x2 integer matrix.
i) If Tr(A)>0, then there exists a Markov partition ® for A with
Markov matrix M ¢ there exists ¢ € GL(2,Z) such that
¢l Up= M.
i1) If Tr(A)<0, then there exists a Markov partition P for A with
Markov matrix M ¢ there exists ¢ € GL(2,Z) such that

¢l dp= —M.

Proof:

(=) In both cases this is Corollary 3.2.8.

(<) Suppose Tr(4)>0, and suppose there exists ¢ € GL(2,Z) such that ¢~ 1A= M.
Let ?' be any Markov partition for A with two rectangles. 9’ gives rise to a Markov matrix,
call it M'. By Corollary 3.2.8, there exists ¥ € GL(2,Z) such that ¥~ Ay= M’'. Then
¢~ lyM'ylg=M = (¢'1¢)'1M'(¢_1¢): M = by Proposition 4.2.7 there exists a
partition ® for A with Markov matrix M. If Tr(A)<0, let ?' be any Markov partition for A
with two rectangles and Markov matrix —M and Proposition 4.2.7 gives us the theorem as

above. O

SECTION 4.3: A CONJECTURE ABOUT r RECTANGLES

We know that the Markov matrix M for any hyperbolic automorphism of T2 must be
aperiodic (there is some integer n>1 such that M™>0) because the image of every rectangle is
dense in T2, It is unknown whether or not this enough for the converse of Corollary 3.2.7 to

be true. We know by Chapter 3 that there are some restrictions as to the frequency with
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which the roots of unity can occur. For that reason, we give the conjecture under the
assumptions that Tr(A)>0, det(A)=1, and a crossing at each point in € with similar

conjectures for the other cases unstated.

CONJECTURE 4.3.1: Let A bea hyperbolic automorphism of T2 (Tr(A)>0 and det(A)=1)
and let M be an rxr integer matrix, r>2. Then there is an FCC Markov partition 9 with r
rectangles for A with Markov matrix M < M is aperiodic and M is similar over Z to a matrix

of the following form:

A 0 0
* AI i
’ 0
* * At
L -

with the following restrictions:

i)  If more than one of the A; are non-zero, then at least one but at most two of the non-
zero A; have eigenvalues equal to {the pth roots of unity excluding 1 for some p}, and the rest
of the non-zero A; have eigenvalues equal to {the pth roots of unity for some p}. Further, r
must be large enough by the standards of Lemma 3.3.9 and A must have period p orbits for
each p appearing above. Also, the roots of unity for each p must occur 3m times for some m.

i) If only A; is non-zero, then A ,=[1].



CHAPTER 5 - A GENERATING SET

SECTION 5.1: CONTINUED FRACTIONS

In this chapter we will show that there is a finite set of partitions, all having the same core,
which generate all other partitions with the same core under the action of GL(2,Z). This leads
to a generating set for all partitions with two rectangles. One of the tools we will use is the
theory of continued fractions. The goal of this section is to introduce a few of the ideas from

this theory. For a more detailed introduction see Olds [9].

Given any real number a>0, we can write « in the following form:

cx=a1+———1————--

1
ag+——m=—
a_?+a4_l*_

where a,€Z. To do this, we write a=&1+a1’ where a, is the integer part of a and 05&;’(1.

If a1'=0, we are done. If not, af’:i‘”r where a1">1. We then repeat the process on

a;

a1”=32+a2'. As a shorthand, we write a=[a,, a,, a3, a4, ...}

DEFINITION 5.1.1: We call [a), ay, ag, ...] the continued fraction expansion of a.

If this sequence terminates at some point, then a€Q and we write a=[a}, a,, a3, ..., aa]. If

the a,’s repeat at some point, we write a=[a,, a,, a3, ..., @, ...a;] where a,...a; is the block
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which is repeated. If o is negative, then a=—a;+ @ where a; is a positive integer and
0<B<1. pJ has a continued fraction expansion f=[0, b,, bj, ...] and we say that the
continued fraction expansion for a is [—a;, by, by, ...]. Of course, the continued fraction

expansion for any integer z is simply [z].

Recall that the characteristic polynomial for a hyperbolic matrix A€GL(2,Z) is

X =A% =Tr(A)A+det(A).

PROPOSITION 5.1.2: Let T be a positive integer.

a) If A is the larger (in modulus) root of A2~TA—1 then A has continued fraction
expansion [T].

b) If A is the larger root of A2—TA+1 then A has continued fraction expansion
[(T-1), 1, (T-2)].

c) If A is the larger root of A2+TA+1 then ) has continued fraction expansion
T, (=), T

d) If X is the larger root of A2_TA—1 then X has continued fraction expansion

[=(T+1), 1, (T-1), T).

Proof: a) A>—TA—1=0 = A>°=TA+1 = A=T+}\ = A=[T).

[12 [T2 [T2_ [T2_
b) A=TE5 == === F = (- AT

=I'
2T

=(T-1)+,I—( where x= B

T—1 .
S 2—T)+{T2—4

2-T)+412—14
P)
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—2 (T—-2){(T—2)—(T+2)} (T—2)%—(12—9)
(T—2)—\T2—4 2(T—2){(T—2)—{T2—4] 2T—2){(T—2)— —{T2-4}

Xx=

=> X is satisfies

{(T 2)— JT"’_} {(T 2)+~1TT-}_(T 2)+JT_?—

T—2)—{T2—4 %(T-2)

(T—2)x?—(T—-2)x—1=0 = x=14—1— = x=[1, (T—2), 1].

(T-2)x 2)
Therefore, \=(T—1)+1 = A=[(T—1), I,(T—2)].
c) If A satisfies A24+A+1=0 then —A satisfies A2—A+1=0 hence —A=[T—1, I, T—2] by

part b). With this in mind we proceed as follows.

M=-TA-1= A=-T-1 3 A=-T+L 5 A=[-T, T-1, T2
d) If X satisfies A°4-TA—1=0 then — X satisfies A2—TA—1=0 hence —A=| T).
A24TA-1=0 = TA24+T2A-T=0 = N2T-A=—T2\+T-) =

AAT=1)=(=AT24+T=AT+1)+AT=A=1 = A\AT—=1)=—(T+1)(AT=1)+X(T=1)—1 =

AMT=1)=1 , i
A=—(T+)+—-57—5— = —(T+)+7w— = (T+)+————— =
(T+1)+=3r=7 B M —
ANT—1)—1 NT=1)—1
A=—(T+1)+i-—--——11— = A=[—(T+1), 1, T-1, T}. O
+_._.......__
(T—-1)+-L;

We have seen that the eigenvalues of A have continued fraction expansions which fall into one
of four categories. The continued fraction expansions for the eigenvectors, however, have no
such regularity. The following series of propositions will demonstrate this fact in one specific

case which will be relevant to future examples.
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DEFINITION 5.1.3: We define the Fibonacci numbers as follows:

Fy,=0; F;=1; and F;=F, ,+F, , for i>2 where F, denotes the ith Fibonacci number.
2 n
LEMMA 5.1.4: Fo=(—-1)"*'4F,F, , for n>1.

Proof: We proceed by induction. Clearly true for n=1,2, 3, 4. So assume true for k<n.
F?'_Fu-HFn—IzF"(Fu-I +Fp2)—F i iFp 1 =Fp j(Fa—Fyp)+FnF, o
Since F,, , ;=Fn+F, ;, we see that F, —F, , ,=—F, ; so the above equality becomes
F?‘_FR-FIFTJ-I=Fn-](_Fn-I)+FﬂFn-2=(_’])(Fi-I_F“Fﬂ-.?)'
By induction Fi_I—FnF”_2=(—1)“ hence

2
Fa=Fp 01 F 1 =(=1)((—=1)"+FaF, ,—FaF, )=(— 1+, O

(F “a+ F“_I)X'l' Fn
(Fn- 2t Fn-z)x"' Fn-f

LEMMA 5.1.5: [1, 1, 1,..,, 1, a, x]= for n>2 and a€Z .

L1
Proof: When n=2, 1+ 1 i =(a+1)x1+1. Therefore, assume true for k<n and prove for n+1.
a+i ax+

1
=1
T (Fra+F, ;)x+Fn

(Fp2a+F, 5)x+F,

|

1,1,1,.,1, a, x]=14

+
] Lt
¥ -
=

=(Fna+Fﬂ,,)x+Fn (_EE_Ia+F“_g)x-i-F,,_,=(Fn+18+Fn)x+Fn
(Fra+F, )x+Fn (Fna+F, ;)x+Fn ~ (Frna+F, )x+Fy’
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Fn Fnﬂ--'-Fn'I
PROPOSITION 5.1.6: The matrix B,= for n>1 and aEZ+ has
Fatr FapratFa

the following properties:
a) det(B,)=(—1)"*.
b) A ReGL(2,Z) such that R¥=B, for any positive integers n>1 or k>2.

¢) my=[1, I, ..., 1, a] where my, is the slope of the unstable eigenvector of By.
——n_

Fn Fna+F“-1 2 ntl
Proof: a) det(B,)= =F,—-F__,,F. ,=(-1 by Lemma 5.1.4.
n+l" n-1
Fuia Foia+Fn

b) Since B, is a non-negative, integer matrix we factor B, using the methods of Section 4.1.

Fﬁ, Fna"'Fn_J Fﬂ'f‘.f F“+13+Fﬂ

Fn+1 Fn+1a+Fﬂ‘ F“ Fﬂa+Fn_J

C Fa o FaatFay | F,  Fa+F,
Foi  FapptFn, F Fa+F,
i 1 a+l . 1 a I
=X . =TI - =I X) .
! 1 a Y 0 1 v"(yx)

Therefore by the uniqueness of the factorization of By, part b) is proven.
¢) We give the proof for n odd (hence det(Ba)=1) with the proof for n even being entirely

similar.

Fnp2+2Fn++|(F, a+2Fs)?—4
Au= 5

hence
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_Fapaty (Foy2+2Fn)2—4 F, ja+|(F, )% +4F,  Fra+4F7 —4
. 2(F“a’+Fn-1) N 2(F"a+Fn-I)

Fopa+y (Fn+fa)2+4Fn+IF“a+4(Fn+IFn-I+1)_4
Q(Fna.-i- F“_I)

Fopa+y (Fn+fa')2+4Fn+1F“a+4Fn+JFn-J___Fn+Ia'+\ (Fp478)°+4F, ; (Fra+F, )
2(Faa+F, ;) - 2(Fra+F, )

my, satisfies (Fna+Fn_1)mﬁ—FnHamu—Fﬂ_H:G =

(F,;a.-i-F,“_i)mﬁ+anu=(Fn+1a+Fn)mu+FH_I=>

= FngratFa)my+F, 4,
v (F“3+Fn-1)mu+Fﬂ

my=[1, 1, ..., 1, a] by Lemma 5.1.5. O
-——n—

Suppose @€R has continued fraction expansion a=[a;, a,, ...]. It is clear then that c¢,=[a,],
c;=[a;, a,), ..., ¢;=[a), ay, ..., a;] are good rational approximations to o and that ¢c;isa

better approximation that c, ;.

DEFINITION 5.1.7: We call c; as defined above the ith convergent of a. If c;>a we call c;

an upper convergent of a. If ¢;<a we call c; a lower convergent of a.

It can be shown that if i is even, then c; is an upper convergent and if  is odd, c; is a lower

convergent.
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We have a general formula for computing the convergents of a number « given the continued

fraction expansion of a=[a;, a,, ...]. If ¢;=[a;, a,, ..., a;]:% then
1

a.’+;P.'+P;'.;=P£+1

C., 1=y ..y 8; ="'——'—_i_—' —
i1=[80 1o 80 a9t e, Tt

A proof of this fact and the fact that p; and g¢; are relatively prime can be found in Olds [9].
In order to use this recursive formula, we must have values for p;, ¢y, p_;, and ¢_;. If we

assign the values

Pg=1, P.)‘=01

Qg=0, g.j'=ll

we see that ¢; and c, agree with our earlier notion ¢;=a,, etc. and we can use our recursive

formula to compute ¢, for any i>1.

- . F.
EXAMPLE 5.1.8: The convergents of 1+2.E=[1] are ciz%‘f:-l‘?—f“. To show this, we compute
]

the convergents.

e=lPotPy_ 140_P
1 1'@0'}'9.1 0+1 4

_1 'P;‘;1+P.‘-2_P_£_F +

i+1
gt % F

Convergents have been proven to be the best rational approximations to an irrational number

as seen in the following theorem. The proof can be found in Olds [9].
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THEOREM 5.1.9: Let c“=%° be the nth convergent to an irrational number . Then

1 Pn 1 1 S
e Tl <g "2l

This estimate can be made even sharper: Of any two consecutive convergents 3—- and p““

,at

least one, call it g satisfies
|Q’-§l<%

Further, if a is an irrational number, and if £ 7 is a rational fraction in lowest terms with ¢>1,

such that
'a —g|<$

then g is necessarily one of the convergents of a.

Convergents also have a geometric significance. We identify each convergent -g—: with the
integer lattice point (g;, p;). If we consider the line y=ax, the convergents of a are good
approximations to the slope of the line y=ax. In fact, they are the best approximations in
following sense: if we place a peg at each point in the integer lattice and lay two strings on the
portion of the line y=ax which is in the first quadrant, then separate the two strings at the
origin, the pegs which the strings touch are exactly the points which correspond to the
convergents of o [9]. See Figure 5.1.10. Let A€GL(2,Z) be a matrix which has [},] as its
unstable eigenvector. It is clear from the above discussion that the image of a convergent of o

under A must be another convergent. It is also clear that if k>1 is a fixed integer and
A % (| 9i+k
p; Pisk
for some #>1 then it is true for all i>1. The next proposition shows that even for matrices

which are not powers of other matrices, k can be large.
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PROPOSITION 5.1.11: Let B, be as given in Proposition 5.1.6. Then

B,| % |=| Yi+n+1
P; Pigntl
if the p; and ¢; are from the ith convergent of my,, the slope of the unstable eigenvector of Bj.

Proof: =~ We prove this by direct computation. Recall from Proposition 5.1.6 that

my=[l, 1, ..., 1, a]. From the calculations in Example 5.1.9, we know that
_n_

%:—F'%-’_'-! for 1<i<n.

We compute the next few convergents:

Pns1_2'Pn +p,,A;=a'F,,+;+Fn
Unt1 B qntq, a.-Fu-f-Fn_:

Pntgz_LlPppitpn_(a+1)F, +Fy
9n+2_ l'qn+1+§n_ (ﬂ.+l)Fn+Fn_I

pﬂ+3 - l'pn+2 +Pn+1_(2a+ I)Fn+1+2F“
gn-f-.‘i l-qﬂ+2+q,‘+1 (23+1)Fn+2Fn_1.

1 ]_ (2a+1)F»+2F, =[cn+s ]
2

We observe that B, 92 =B, =
P 2 (2a+1)F, ;+2F, | | Pn+s

SECTION 5.2: THE DEFINING POINT REPRESENTATION

We now introduce one characterization of core-connected partitions. It is worthy to note that

this construction was developed to aid in graphing Markov partitions of T2 on a computer.

Let us first consider the case C={the origin}. When asked to draw a simple Markov partition

for T2, one usually draws a lines extending out from the origin in the directions of the
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eigenvectors of the toral automorphism A. They are drawn so that each line has its endpoint
in another line so that T2 is divided up into parallelograms. It is then necessary to show that
this construction satisfies all the conditions set forth in Definition 1.1.16. This partition is
core-connected and has €={0}. In constructing this partition, the main consideration was that
each line had its endpoints in another line. Of course, if any of the eigenvalues of the matrix
A are negative, we must be a bit more careful about the lengths of these lines. We shall
explore the above construction a bit further. From now on we will assume that all partitions

are core-connected.

If we draw the lines described above in R? instead of T2, we see two line segments which
intersect at 0. Figures 5.2.2 and 5.2.3 show a partition and its preimage under mR2-T2
Notice that we have chosen a single preimage at 0 even though there are preimages at each

point in ZxZ.

DEFINITION 5.2.1: Let ¢€C. Then 7~'¢n[0,1)x[0,1) is exactly one point which we will call
the central preimage of g and which we will denote gi Further, let I be an essential
component of 8%, hence there is a point ¢€I such that ¢6€C. We define the central preimage

of 1, which we denote I', to be the preimage of I which contains d.

In other words, we want the preimage of I which has the point in I from the core in the region

[0,1)x[0,1). This is the preimage shown in Figures 5.2.2 and 5.2.3.



R, R,

Figure 5.2.2: A Partition 9

R
R
R

Figure 5.2.3: A Preimage of ?

84



85
Let us examine Figure 5.2.3 more closely. We see that the length of the unstable boundary is
determined by two points in the integer lattice: one which determines how far 8,2 extends
into the first quadrant (in this example) and one which determines how far 8, % extends into
the third quadrant. Similarly, there are two such points for 8s%®. These pairs of integer points

determine the partition. We make this notion more formal.

Let A be a toral automorphism with eigenvalues and eigenvectors as defined in Section 1.2.
Let g€ and suppose Ly is the line in R? with slope ¥, through ¢ =(xq, yq). We can write
Ly as Ly(t)=(xq, yq)+tVy. We will assume WLOG that Vy is a unit vector in the upper half
plane. We can similarly write Lg(t)=(xq, y4)+wVs where Vg is a unit vector in the upper half

plane.

DEFINITION 5.2.4: For g€C, we define
A =WY(g)nd,®
0s=W5(q)NdsP.
We will refer to the above as the unstable (stable) boundary at g. We also define
0y 4+ =7({Ly(1)[t20})N8,y P
dh-=7({Lu(1)|t<0})NB, P
g4 =m({Ls(W)|w>0})N8sP
0% =r({Lg(w)|w<0})N 352

We refer to the above as the unstable (stable) positive (negative) boundary at g.

Figure 5.2.5 has these entities labeled. If C consists of a single fixed point, we will omit the
superscript ¢. We will always omit any reference to a specific partition although such is

certainly implied.
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v

-

Figure 5.2.5: Boundary Parts Labeled

DEFINITION 5.2.6: The lengths of 6:_" + 88, 6; + and 8;, are determined by integer points

which we will denote p_f for *={u+, u-, s+, s-}.

DEFINITION 5.2.7: Define
ti=(pl—q)-¥, for +={u+, u-, s+, s-} and
wi=(p!—q)-Vs for x={u+, u-, s+, s-}.

where we consider (pf—gq) as a vector and use the standard dot product.

Figure 5.2.8 has all of these labeled. Notice that ltfl_l_I:length(aﬂ_l_), !ta_lzlength(aa_),

lw:+l=length(6g+), and |w§_|=length(3§_).



87

Wus

ts+ tut

tu-
Wu. Wg-

ts-

Figure 5.2.8: t, and w, Labeled

If we are given a set of two pairs of integer points, when do they actually define a partition?
In order for §,,, to have its endpoints in other line segments, the length of the line from p,
to 8, + must be shorter than the length of & e if Put is below 9, 4+ or shorter than the length
of ds if p,, is above 8, .. Further, if A3<0, then A(J,,) must be contained in Js. and
similarly for A(8s.) and the unstable boundary components if A\, <0. We make this precise in

the following proposition.

PROPOSITION 5.2.9: Let A be a hyperbolic toral automorphism. Given two pairs of integer
points {{p, 1, Pu-}, {Pg4+ Ps-}}, they define a core-connected Markov partition with C={0} if

and only if all of the below are satisfied:
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i) p. is on the integer lattice for *={u+, u-, s+, s-}.
i) tytr Wt 20, ty, ws <0 with at most one of them equal to 0.
ii1)  If Ay <0, then l)\utu+|2|tu_| and I'\utu-|2|tu+|-

If As<0, then |)«ﬂ,tB +|5[tg_| and |Ast,_|5|t.3 +|.
w) If W+ <0, then |ws_]2lwu+|; if w4 >0, then |ws+|2|wu+|.

If wy. <0, then |wg | >|wy._|; if wy. >0, then |W3+|Z|“"u-l-

If 5 <0, then |tu_|glts+|; if tg >0, then |tu+|2|ts+l'

If ts. <0, then [ty.|>|ts-]; if ts->0, then |tu+|2[ts,|.

Proof: Condition 1) is clearly necessary since each defining point must be equivalent to 0 when
mapped into T2. Condition ii) insures that our points make sense in that Py actually defines
9,4 etc. Condition iii) insures that the image of 0y P covers itself under A and the image of
0sP is mapped by A into itself. Condition iv) makes sure that we actually have rectangles
and that there is no “overhang”. If any of these is not satisfied, then we do not have a

partition by the argument above. If they are all satisfied, we do have a partition. O

We now suppose that C={a finite number of periodic orbits}. At each point in C, we have a
similar situation as above. The only difference is that each defining points now must be
equivalent to some point in C and that 8y, must cover 3s+ if A(a)=p and Ay>0, and so

forth.

PROPOSITION 5.2.10: Let A be a hyperbolic toral automorphism and let B={a finite
number of periodic orbits}. Given two pairs of points {{pg+, pi-}, {pgy, ps}} for each a€B,
they define a core-connected Markov partition with C=B if and only if all of the below are

satisfied:
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i) mpd €C VaeC and *={u+, u-, s+, s-}.
i) thy, wgy >0, ti., wg. <0 for each o and
a) at most one is zero for every o
b) at most two are zero for any fixed a in which case the two which are
zero are both stable or both unstable.
i) If Ay>0, then [Autdy | >[th | and [Autg |2t ] if A(a)=p.
If As>0, then |Aste, |<|tf, | and st |<[td] if A(@)=p5.
If Ay <0, then [Aytg | >t6. | and [Agt[2]t5 | if A(e)=5.
If As<0, then |)\St§+|5|t§_| and |Astg;|g|tf+| if A(a)=24.
iv) If mpj, =0 then
if w4 <0, then |wg_]2]wﬁ+|; if wg 4 >0, then |w£+|2|wﬁ+l.

If #p3.=p then

if wyj.<0, then |wsﬁ_|2|wﬁ_l; if w.>0, then w§+|2|wﬁ_|.
If mpgy =P then

. . B

if tgy <0, then |t5_|2[t;‘+; if tgy >0, then |tu+f2|t;‘+ i
If mp$ =P then

if t§ <0, then [tﬂ-] >|te]; if t& >0, then ltl'; + |2]t§"_|.
Proof: The reasoning is the same as in the previous proposition. O
SECTION 5.3: THE GENERATING SET §
In this section we prove the existence of a finite set of partitions with two rectangles all having

the same core which generate all other two-rectangle partitions with that particular core. With

this, we will have a finite set of partitions which generates all partitions with two rectangles.
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We will assume throughout this section that the unstable eigenvector of A is in the first
quadrant. If this is not so and A has its stable eigenvector in the first quadrant, we work with
A~! since by Proposition 1.4.2 any Markov partition for A~! is also a partition for A. If A
has both stable and unstable eigenvectors in the second quadrant, the A is similar over Z to
either a non-negative or non-positive matrix by Corollary 3.2.8 and this class of matrices has
the desired unstable eigenvector by the Perron-Frobenius Theorem [10].  Further, by
Proposition 1.4.3 there is a one-to-one correspondence between the partitions for A and the

partitions for B if A and B are similar over Z.

First, we examine the convergents to the slope of V;; which for now we will call a, as these

arguments apply to all real numbers. In some cases, there are other fractional (reduced)

o . : p;
approximations g>a such that |a—g|<la—%‘ but |a—§|> cx—q"”
]

p; .
where g; 1s an upper
1

convergent to o and ¢.<¢<g; , yet ? is not a convergent. For example, if a=m'1, the first
g i Gipr YU 7 € 7

few convergents are %, % i5» 39 and % The first, third, and fifth of these are upper

convergents and the second and fourth are lower convergents. However, we notice that

% T2<39 and -537‘ ?<§—3 <l-r <I5§<;<%. We make the following definition.

w

DEFINITION 5.3.1: Let be the convergents to an irrational number a. If there rational

pI,I ps, pl,}
, T:?' .oy r,; such that

i) qi,1<q‘-’2<...<q'-‘j for each { and

numbers (reduced)

.o Pi p', P:, pl,j Piyo
D e i i rrit ivee

Pi1 Pi2
then we cal q”I q" p"’ the sth upper pseudo-convergents to a.
5,1 14,2
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If there rational numbers (reduced) 7 p"" o §L1 p"’ such that

i) 9,1<9;2<--.<¢;; for each ¢ and

p', P';2 p‘;j ._pl.+2
") G q:.?< ”<-¢G_qi+2<a

'\‘.t

3,1 l',2 a',j .
thenwecallq ' Tz -g:;thezth we. u vergents to a.

Note that convergents are pseudo-convergents. Also note that if A has a as the slope of its
unstable eigenvector, pseudo-convergents map to pseudo-convergents under A. We already
know that convergents map to convergents. Hence, the number of upper pseudo-convergents
between ¢; and ¢;, , is constant for all upper convergents c¢; and similarly for lower

convergents.

EXAMPLE 5.3.2: For the matrix [2 ;], my = —41—’,5_— If we look at the pseudo-convergents for

my, We see

[BIE1=(V ) [33]V]=1%]
331238 (8312 )=[8%)

We observe that convergents do indeed map to convergents and pseudo-convergents to pseudo-

convergents.
The best way to compute the ith pseudo-convergents to a number « uses the Farey sequences.
DEFINITION 5.3.3: Let %, be the (ordered) sequence of all rational numbers in reduced form

between 0 and 1 inclusive with denominator less than or equal to n. We call ¥, the nth Farey

sequence.
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EXAMPLE 5.3.4: We compute that

g1= %l % 3 gz={%s %| %};

9
oy

..I-L
‘:IG
U"‘Ill-‘
it
(.‘l.)"-l
I'.‘P.NM
!\3"-'
l{‘Iw
lﬂ!lﬂ
J:lu
u;ﬂh
s

To compute the ith pseudo-convergents for a given irrational «, we look at ‘:Tg‘. +2" Suppose c;
is an upper convergent and we are computing the upper pseudo-convergents. We look at the
numbers between c¢; and c; 42 in G‘r?i +2° If there are none, there are no upper pseudo-
convergents. If there are, find the one with the lowest denominator, call it £;. It is a pseudo-
convergent. Now look between £; and c; 2 If there are no numbers, we have found all the
ith upper pseudo-convergents. If there are numbers, again find the one with the lowest
denominator. It is a pseudo-convergent, call it £,. Continue this process until £, and c; , are
adjacent in ‘§q'_+ % and we have found all the ith upper pseudo-convergents. A similar process

will find all the ith lower pseudo-convergents.

DEFINITION 5.3.5: We combine the convergents and pseudo-convergents into one sequence,
I, where
I'={c; where ¢, is a convergent or a pseudo-convergent and |a—c£|>|or—c’-+f|}.
Further, define
T'yw={c; where c,€T and ¢;>a} and

I',={c; where c;€I and ¢;<a}.



93
We now apply this to Markov partitions. We will identify pseudo-convergents with points on
the integer lattice as we did previously. For now, we will assume that C={0} for our
partitions and that Ay >0 so that we can have the length of 8, equal to zero. Suppose we
choose a length I, for 8,,, by choosing p,, so that 8, is long. If p, is not a pseudo-
convergent, then there is a pseudo-convergent £ such that a line segment of length I, from £ in
the direction of Vy intersects the line segment from p, . in the direction of Vg to the line
y=myx. This implies that in a partition with the length of 9, i} equal to I, there would be a
crossing and by the proof of Lemma 3.1.3 such a partition would have more than two
rectangles. Figure 5.3.6 shows why (2,2) can not be a defining point for a partition with two
rectangles for [f i] Hence, in order to have a partition with two rectangles and our above

assumptions, p, 4+ must be a pseudo-convergent.

@)

(1) e

7

Figure 5.3.6: Why (2,2) Can Not Be a Defining Point
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Conversely, suppose that p, + is an upper pseudo-convergent. Let £, be the largest lower
pseudo-convergent which precedes p,, in T; hence |w:i_|>|w:f‘ +|- Let £, be the upper
pseudo-convergent which precedes p,, in I'y; hence |w§?l>|w§,u+]. If py4 is a lower pseudo-
convergent, choose the lower pseudo-convergent which precedes p,, in T'; and the smallest
upper pseudo-convergent which precedes p,, in I'. We would then replace w:_u * with w:i'i'
in the above inequalities. Let pg +=—£ ; and pg =—&,. The reason we make these choices is
so that we have no crossings and hence two rectangles. If we chose a defining point which
precedes either £, or £, in I, then the stable boundary from one of them would intersect the
line y=myx and we would have a crossing. If we chose a point which followed p, in T, then
we would not have the endpoints of 85 in 8. The reason we take minus these quantities is
that we want O5, to be the length of the line segment from §; to y=myx and so forth.
Letting py-=0, the points {p,, Pu-y Pgys ps.} are defining points for a Markov partition in
that they satisfy the conditions set forth in Proposition 5.2.9. They satisfy these conditions by

construction. Because we had no choice when selecting the other defining points, the length of

0,4 defines every partition with two rectangles, €={0}, and the length of 8. equal to zero.

Once again we suppose that A is a hyperbolic toral automorphism and that ¥, has pseudo-
convergents as defined above. For convenience, we will assume that i is a large enough number
so that stable lines from ¢; intersect y=ax closer to the origin than stable lines from ¢; ;.
This is not necessarily the case for small values of i and eigenvectors far from perpendicular.
Because these two-rectangle partitions are defined by the length of 9, 4o Of cir':"»c,- 44 then the
partition defined by ¢; will be mapped to the partition defined by c; ;. This observation leads

us to the following proposition.
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PROPOSITION 5.3.7: Let b, denote the set of two rectangle Markov partitions for A with
the length of 8y equal to zero and €={0}. There is a finite set §,, of partitions in by, such

that any partition in My is the image of an element of §y under some power of A.

Proof: Let i be large and suppose that c.--‘il'o C;4k» Let P, be the partition defined by c;. Let
gu={@j}€:f“'. We claim that §, is such a generating set. Consider ®n with n>i+k We
can write n=mi+j with m>1 and 0<j<k—1. Hence, P, is the image of P;4; under m
iterates of A. Therefore §, generates all partitions with unstable positive length larger than
that of P, ; ;. Suppose then that P, has positive unstable length less that that of ®;. Under
enough iterates of A, the unstable positive length of .A.I‘.’Pﬂ will be larger than that of P, k-1

hence A"EP,,:.,‘.'“‘.‘PH_J' for 0<j<k—1 and we are done. O

The set §y can be quite large. Consider Propositions 5.1.6 and 5.1.11. If n is large, we have

the ith convergent mapped to the (i+ n+1)st convergent. Therefore, §,; contains n partitions.

Because [’[} _""1]1.['& _01:|=J., by Proposition 1.4.3 —% is always a partition for 4. Therefore,
by the previous proposition, we have shown that §, as defined above generates all partitions
with either the length of 9, + or the length of 8. equal to zero under powers of A and
['& 9 ] The question arises as to when §, actually generates all partitions with two
rectangles and €={0}. This is equivalent to asking whether or not we can map the unstable
manifold of A to the stable manifold of A with an element of GL(2.Z). The way to visualize
this if the eigenvectors are perpendicular is to ask whether or not we can rotate the partition
by an angle of radian measure 5. If Ag<0, then we cannot rotate in this fashion and still have
a Markov partition. In our rotated partition, the former unstable boundary is now the stable

boundary. Because length(d,-)=0 in the former partition, length(8s.)=0 in the new partition
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and Adg. must cover dg + Which is impossible. However, if A\g>0, we can rotate in this
fashion in some cases. Being able to rotate in this way means that we are mapping a partition
for A to a partition for A~ while maintaining the identity of the unstable and stable
directions. (The unstable eigenvector for A is the stable eigenvector for A=) In other words,
we are searching for a ¢€GL(2,Z) such that ¢~'A¢=A"". The following proposition uses this
notion. It is sufficient to prove the proposition for non-negative matrices since each element of

GL(2,2) is similar over Z to either a non-negative matrix or a non-positive matrix.

PROPOSITION 5.3.8: For A>0, there exists a matrix ¢€GL(2,Z) such that ¢l Up=A"1

& A is shift equivalent over Z to AT,

Proof: (=) Suppose 3 ¢€GL(2,Z) such that ¢~ Ap=A"". Let P be a partition for A with
Markov matrix .A. Then by Proposition 1.4.3, ¢~ is a partition for A~! with Markov
matrix A = by Proposition 1.4.2 ¢~'® is a partition for A with Markov matrix AT = 3
% €GL(2,Z) such that ¥~ 'APp=AT = by Proposition 4.1.9 and its proof that A and AT are

shift equivalent over Z.

(«) Suppose A is shift equivalent over Z to AT. By Proposition 4.1.9 and its proof,
3YEGL(2,Z) such that ' AYp=AT. Let P be a partition for A with Markov matrix A.
=19 is a partition for AT with Markov matrix 4 = ¢~'P is a partition for
(AT 1=(A™)T with matrix AT = 3$€GL(2,Z) such that ¢7'(47)Tg=AT =

((¢T)A_1(¢—1)T)T=.AT = ¢TJ—!(¢T)—I:"‘ 0
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What we have now shown is that if the hypotheses of the above proposition are met, Gy
generates all two-rectangle partitions with €={0} under elements of GL(2,Z). If the
hypotheses are not met, we use the construction in Proposition 5.3.7 on Vg to find an analogous
set §s. (If Vg is not in the first quadrant, rotate by = so that it is easier to find the “closest”
integer lattice points then rotate back.) §g will be a generating set for all partitions with

length(Js.) or length(d; ) equal to zero. We have proven the following:

PROPOSITION 5.3.9: Let b, be the set of all two rectangle Markov partitions for A with
C={a single fixed point}. There is a finite set of partitions § such that any partition in b, is

the image of an element of § under an element of GL(2,Z) which commutes with A.

Proof: By the above arguments, if C={0}, let §=0§, UG5 and we are done. If ? is a partition
with € consisting of any other fixed point of A, P is a translation of a partition with C={0}.

Since A has a finite number of fixed points, let

6= U {Guuls}
Fix(A)

and we are done. O

We have completed the case when €={0}. We know from Proposition 3.3.9 that the only
other way we can have two rectangles is to have two fixed points in € with UNY=0. The
procedure we will use in this case is essentially the same as in the C={0} case except for the
fact that our lines do not necessarily pass through the origin hence our computations will not
be aided by the use of pseudo-convergents. In the case C={0}, a length of unstable positive
boundary determined a partition. In the case where C={g,, ¢,}, we will still use a length of
unstable positive boundary as a reference point but now it will define a finite number of

partitions. WLOG, we assume that U =g, and ¥=g,. We now develop some ?dea.s which will
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aid us in our computations. We will abuse notation and refer to qieT2 and

a‘r“g;r,-e[l),1)><[[],1)CR2 as ¢;.

Define A’ to be A’={all points (a,b) in QxQ such that x(a,b)=g,}. For c€A/, define ¢ to

be the point on the line I(t)=g¢,4t¥, closest to c. We can write ¢ as e=q;+tVy.

DEFINITION 5.3.10: Define A as
A={the sequence of all c€ A’ such that the rectangle R with diagonal corners ¢,

and c satisfies int(R)NA’'=0. We order A by the following rule:

t. <t.
Cs' c'+

for all i.}
1
Further, define
Ay={c;EA such that ¢; is above the line I(t)=¢,+tV,} and

A;={c;€A such that ¢; is below the line [(t)=g¢,+tVy}.

An equivalent definition for the pseudo-convergents (in the geometric sense) of a real number «
is {all the points p on the integer lattice such that the rectangle R with diagonal corners 0 and
p contains no integer lattice points in its interior}. This is the motivation for the above
definition. The points in A behave in the same way as pseudo-convergents under the action of
A; that is, A:A— A for points away from the origin. Near the origin, particularly in the
square [0,1]x[0,1], we may need to translate the image of a point in A across the x or y-axis.
Also, defining points for 8, + in the two rectangle case must be in A for reésons exactly

analogous to those for pseudo-convergents.
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PROPOSITION 5.3.11: Let M, be the set of all Markov partitions for .4 with two rectangles
and U={q;} and $={g,} with ¢;7#¢,. There is a finite set § of partitions in b, such that

any partition in b, is the image of an element of § under a power of A.

Proof: Suppose we choose pﬂi:cjeﬁ so that @, i is long and suppose Ay >0. We know that
wp:l{*_ €7 which means that p;{+_ is equivalent modulo one to g,. Extend lines in the direction
of Vg and —Vg from ¢, (in T2) until both endpoints of this line lie in 3u+ and no crossings.
From this we can calculate p;i_ and pg,.g. Extend the line from ¢, to make 8,- with no
crossings and we have a partition, call it P It is possible now that we can extend 8y- and
shorten Jg in exactly the manner of Proposition 4.2.1 to obtain another partition ?; , which
also has sz-|- as before. We can continue this process only a finite number of times because
eventually when extending dg we will intersect 8y, have a crossing, and more than two
rectangles. This process generates partitions ‘EPj, ; for 1<i<n;. The image of ‘.'PJ-,:- is a partition
Ptk for 1<i<n;. We repeat the above process for P, ., which has pﬂ#:cﬂm, for
1<i<n,, . and 0<m<k—1. If Ay <0, then Az(?j,;) is a partition ¥, , . which we are certain
has positive unstable length greater than that of @j,r We take A2 of the partition because we
are characterizing a partition by its unstable positive length and A? maps 0, 4 across Oyt

So if \y<0, we set ., =A%, ) and do exactly what we did above. (Note: If Ay<0,

J+k,i
some of these partitions ?Pj,i may not be Markov; namely, A(8,) might not cover dy. In this
case, any image of P, ; will not be Markov either so we discard P, ;.) By an argument exactly
analogous to that for the C={0} case, we see that

Jtm-1( ng
G= U {U@a.ﬁ}
f=1

generates all partitions with this specific U and ¥. O
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We have proven the following theorem.

THEOREM 5.3.12: Let M denote the set of Markov partitions with two rectangles. There
exists a finite set §C M such that any element of A is the image of an element of § under a

matrix in GL(2,Z) which commutes with A.

Proof: Proposition 5.3.9 tells us that a finite set generates all partitions with C={a single
fixed point}. Proposition 5.3.11 tells us that a finite set generates all partitions with C={two
fixed points}. Because A has a finite number of fixed points there are a finite number of
possible core combinations hence a finite set will generate all partitions with two fixed points

in the core. The union of these two sets generates all partitions with two rectangles. u}



CHAPTER 6 - CONCLUSIONS

SECTION 6.1: SUMMARY

We study the Markov matrix M as defined in this paper to determine which SFT’s are
semiconjugate to the system (T2, A, ?). If we assume FCC, we can say quite a bit
about M. We have established necessary conditions on the eigenvalues of M and in the two
rectangle case we know precisely which SFT’s are semiconjugate to our system; namely, those
which, when represented as an edge shift with two nodes, have transition matrix similar over
to Z to A. Another way of describing this set of matrices is the strong shift equivalence class
(2x2 matrices) of A if A>0 or of +(¢7'4¢)>0 (4€GL(2,Z)) if A is not non-negative. It can
be shown that if M>0 is any nxn integer matrix which is strong shift equivalent to A>0 (or
¢~ ' A¢$>0) then there exists an FCC partition for A with matrix M [11]. Hence Conjecture
4.3.1 is equivalent to saying that the conditions given describe strong shift equivalence classes.
As seen in this paper, there are Markov matrices which are not strong shift equivalent to A
but these can be broken down into equivalence classes. Further, under the FCC assumption,
we can learn something of the composition of the core and under further assumptions

determine the exact contents of the core.

If we do not assume FCC, we witness very interesting behavior in the core. If we see a
rectangle which crosses itself n times under A (and mR—R is 1-1 everywhere), we can divide

R in such a way that we construct a new partition with the full n shift in the core. In such a

101
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case, the eigenvalues of M tell us nothing about the core. In fact, if we do not assume FCC we
cannot in general conclude that we have it by looking at M. We can in some in some cases

conclude that a partition is not FCC.

Finally, if we concentrate on two rectangle core-connected partitions, we can find a finite set of
partitions which generate all partitions with two rectangles under elements of GL(2,Z) which
commute with A. It is probable that such a generating set exists for partitions with n

rectangles for each n.
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Appendix - Homology

In this appendix we state two theorems used in this exposition. They can be found in most

introductory algebraic topology texts.

THEOREM: There is a homomorphism 8.:Hy(X, A)—H,_ ;(A) defined for ACX and all p
such that the sequence
1. Ma 0.

is exact where i and 7 are inclusions. The same result holds in reduced homology if A30.

THEOREM (Mayer-Vietoris): Let X=X,UX,; suppose {X;, X,} is an excisive couple. Let
A=X,;NX,. Then there is an exact sequence

w-— Hp(A) — Hp(X))®Hp(X;,) — Hp(X) — Hy (A) = -
called the Mayer-Vietoris sequence of {X;, X,}. A similar sequence holds in reduced homology

of A#0.
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