Basic Mathematica Commands

Defining and Evaluating Functions

To define the function $f(x) = x^2 + 2$, type and evaluate the following cell.

 $f[x_] := x^2 + 2$

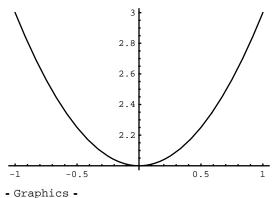
Note that no output is generated, and that the colon and underscore are necessary for function definition **but not** for function evaluation. You could also use a template to enter the exponent. Templates are also useful for quotients and exponential functions.

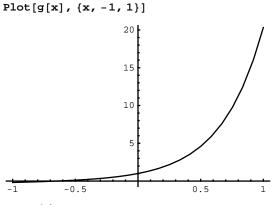
$$g[x_] := E^{3x} + \frac{Sin[x]}{Cos[2x] + 4}$$

To evaluate a function at a given value, type the function's name and its argument in square brackets.

f[2.7]9.29 g[-5] $\frac{1}{e^{15}} - \frac{\sin[5]}{4 + \cos[10]}$ g[-5.]0.303368

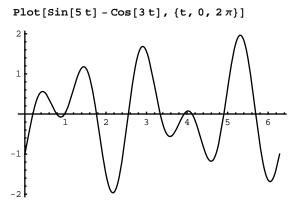
Notice that if you include a decimal in your input, you receive decimal output. If not, you receive exact output.


Plotting Graphs


To plot the graph of f(x) over the interval $a \le x \le b$, we use the following command.

```
Plot[f[x], \{x, a, b\}]
```

To plot f and g as defined above over the interval $-1 \le x \le 1$, we type and evaluate the following cell.


```
Plot[f[x], {x, -1, 1}]
```


- Graphics -

To plot a function you haven't already defined, just type the function definition into the command. The semicolon at the end of the command suppresses the word "Graphics".

Clearing Definitions

To remove all previous definitions of a variable x or a function f, type the following.

```
Clear[x]
```

Clear[f]

Solving Equations

To solve an equation for a variable x, we use the following command. The two equal signs are very important!

```
Solve[f[x] = g[x], x]
```

Here are a few examples.

Solve $[x^2 - 4x + 5 = 0, x]$ { $\{x \rightarrow 2 - i\}, \{x \rightarrow 2 + i\}$ } Solve [3t - 1 = 2t + 3, t]

```
\{\,\{\,t\,\to\,4\,\}\,\}\,
```

 $Solve[ax - bt = cx^2 - t, x]$

$$\left\{\left\{\mathbf{x} \rightarrow \frac{\mathbf{a} - \sqrt{\mathbf{a}^2 + 4\,\mathrm{c}\,\mathrm{t} - 4\,\mathrm{b}\,\mathrm{c}\,\mathrm{t}}}{2\,\mathrm{c}}\right\}, \ \left\{\mathbf{x} \rightarrow \frac{\mathbf{a} + \sqrt{\mathbf{a}^2 + 4\,\mathrm{c}\,\mathrm{t} - 4\,\mathrm{b}\,\mathrm{c}\,\mathrm{t}}}{2\,\mathrm{c}}\right\}\right\}$$

We can also solve two equations simultaneously.

Solve[$\{y == 3x - 2, 3y == 4x - 4\}, \{x, y\}$]

$$\left\{\left\{\mathbf{x} \rightarrow \frac{2}{5} \text{ , } \mathbf{y} \rightarrow -\frac{4}{5}\right\}\right\}$$

The Solve command is useful for finding precise solutions to equations. However, this often this is not desirable or even possible. Consider the following equation.

Solve $[x^3 + 3x^2 - 4x - 1 = 0, x]$

$$\begin{split} & \left\{ \left\{ \mathbf{x} \rightarrow -1 + \frac{\left(\frac{1}{2} \left(-45 + i \sqrt{2091}\right)\right)^{1/3}}{3^{2/3}} + \frac{7}{\left(\frac{3}{2} \left(-45 + i \sqrt{2091}\right)\right)^{1/3}}\right\}, \\ & \left\{ \mathbf{x} \rightarrow -1 - \frac{\left(1 + i \sqrt{3}\right) \left(\frac{1}{2} \left(-45 + i \sqrt{2091}\right)\right)^{1/3}}{2 \times 3^{2/3}} - \frac{7 \left(1 - i \sqrt{3}\right)}{2^{2/3} \left(3 \left(-45 + i \sqrt{2091}\right)\right)^{1/3}}\right\}, \\ & \left\{ \mathbf{x} \rightarrow -1 - \frac{\left(1 - i \sqrt{3}\right) \left(\frac{1}{2} \left(-45 + i \sqrt{2091}\right)\right)^{1/3}}{2 \times 3^{2/3}} - \frac{7 \left(1 + i \sqrt{3}\right)}{2^{2/3} \left(3 \left(-45 + i \sqrt{2091}\right)\right)^{1/3}}\right\}, \end{split}$$

Compare this solution to the following. Note that the only difference is the decimal point on one coefficient.

Solve $[x^3 + 3, x^2 - 4x - 1 = 0, x]$

 $\{\,\{x\,\rightarrow\,-\,3.94883\,\}\,,\ \{x\,\rightarrow\,-\,0.217184\,\}\,,\ \{x\,\rightarrow\,1.16601\,\}\,\}$

What about this one?

Solve[Cos[x] = x, x]

Solve::tdep : The equations appear to involve the variables to be solved for in an essentially non-algebraic way.

```
Solve[Cos[x] == x, x]
```

The Solve command doesn't work. However, we can use FindRoot to approximate a solution. The number 1 is an initial guess that we usually obtain from a graph.

 $FindRoot[Cos[x] = x, \{x, 1\}]$

 $\{x \rightarrow 0.739085\}$

Built-in Functions and Constants

Mathematica has many built-in functions. All of them require square brackets around the argument. Here are a few examples.

Sin[x] Cos[x] Exp[x] ArcTan[x] Sqrt[x]

 $e^{x}\sqrt{x}$ ArcTan[x] Cos[x] Sin[x]

The function Exp[x] is another way of writing E^x . Mathematica also has every mathematical constant you can

imagine, all beginning with a capital letter.

```
Pi E GoldenRatio
```

e GoldenRatio π

Calculus

To find a derivative, use the D command or put a prime after the function's name.

```
D[x^{3} - 4, x]
3 x^{2}
g'[x]
3 e^{3x} + \frac{\cos[x]}{4 + \cos[2x]} + \frac{2\sin[x]\sin[2x]}{(4 + \cos[2x])^{2}}
```

To find a second derivative, use the D command as shown or put two primes after the function's name.

```
D[x^3 - 4, \{x, 2\}]
```

бх

g''[x]

9 e ^{3 x} -	Sin[x]	4 Cos[x] Sin[2x]	4 Cos[2 x]	8 Sin[2 x] ²
	4 + Cos[2x] +	$\frac{1}{\left(4 + \cos\left[2x\right]\right)^2} + \sin\left[x\right]$	$\left(\frac{4 + \cos \left[2 x \right] \right)^2}{4 + \cos \left[2 x \right] \right)^2}$	$(4 + \cos [2x])^3$

Definite and indefinite integrals are evaluated as shown.

```
Integrate [Sin[3x], x]

-\frac{1}{3} \cos[3x]
Integrate [Sin[3x], {x, -1, 2}]

\frac{\cos[3]}{3} - \frac{\cos[6]}{3}
```

Numerical integration is sometimes needed as well.

```
Integrate[E<sup>*</sup>(x<sup>2</sup>), {x, 0, 2}]

\frac{1}{2}\sqrt{\pi} Erfi[2]

NIntegrate[E<sup>*</sup>(x<sup>2</sup>), {x, 0, 2}]

16.4526
```

Creating Lists of Values

To create a list of numbers or function outputs, use the command below.

Table[h[i], {i, 1, 5}]
{h[1], h[2], h[3], h[4], h[5]}

Table[h[i], {i, -1, 3, .5}]
{h[-1], h[-0.5], h[0.], h[0.5], h[1.], h[1.5], h[2.], h[2.5], h[3.]}
Table[n^2 - 1, {n, 1, 10}]
{0, 3, 8, 15, 24, 35, 48, 63, 80, 99}

Evaluating Sums

To evaluate sums, you need to specify a function and a variable with a range and a step size. If no step size is indicated, *Mathematica* assumes a step size of 1.

```
sum[i^2, {i, 1, 25}]
5525
sum[i^2, {i, 0, 25, 1/2}]
42 925
4
sum[i^2, {i, 0, 25, .5}]
10 731.3
```

Lists

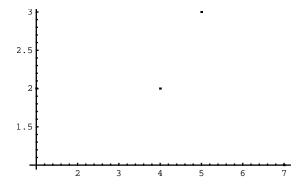
To enter a list of points, use curly brackets around each point and around the entire list.

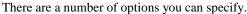
examplelist = {{1, 2}, {4, 2}, {5, 3}, {7, 1}}

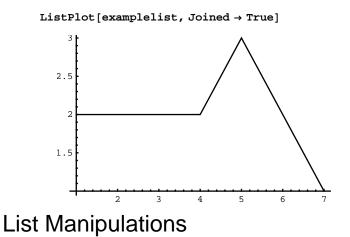
 $\{\{1, 2\}, \{4, 2\}, \{5, 3\}, \{7, 1\}\}$

You can also use the Table command.

newlist = Table[{i, i^2}, {i, 0, 3, .5}]


 $\{\{0, 0\}, \{0.5, 0.25\}, \{1., 1.\}, \{1.5, 2.25\}, \{2., 4.\}, \{2.5, 6.25\}, \{3., 9.\}\}$


A semicolon will suppress the output.


```
examplelist = {{1, 2}, {4, 2}, {5, 3}, {7, 1}};
```

To plot a list, use the command below.

ListPlot[examplelist]

Multiplying two lists is done one coordinate at a time. Notice that this is NOT matrix multiplication, nor is it the dot product from vector calculus!

{1, 2, 3, 4} {a, b, c, d}
{a, 2b, 3c, 4d}
2 {a, b, c, d}
{2 a, 2b, 2c, 2d}
2+ {a, b, c, d}
{2+a, 2+b, 2+c, 2+d}
f[x_] := x^2
f[{a, b, c, d}]
{a², b², c², d²}